Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Direct ; 6(12): e470, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36523608

RESUMO

The production of the common bean (Phaseolus vulgaris L.), one of the most important sources of protein and minerals and one of the most consumed grain legumes globally, is highly affected by heat and drought constraints. In contrast, the tepary bean (Phaseolus acutifolius A. Gray), a common bean-related species, is adapted to hot and dry climates. Hybridization to introduce complex traits from the tepary bean into the common bean has been challenging, as embryo rescue is required. In this study, we report three novel interspecific lines that were obtained by crossing lines from prior common bean × tepary bean hybridization with Phaseolus parvifolius Freytag in order to increase the male gametic diversity to facilitate interspecific crosses. These interspecific lines enhanced the crossability of the common bean and tepary bean species while avoiding the embryo rescue process. Crossing these three interspecific lines with tepary beans resulted in 12-fold more hybrid plants than crossing traditional common beans with tepary beans. Whole-genome sequencing analysis of these three interspecific lines shows large introgressions of genomic regions corresponding to P. parvifolius on chromosomes that presumably contribute to reproductive barriers between both species. The development of these lines opens up the possibility of increasing the introgression of desirable tepary bean traits into the common bean to address constraints driven by climate change.

2.
In Vitro Cell Dev Biol Plant ; 52(5): 461-478, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27818605

RESUMO

The importance of cassava as the fourth largest source of calories in the world requires that contributions of biotechnology to improving this crop, advances and current challenges, be periodically reviewed. Plant biotechnology offers a wide range of opportunities that can help cassava become a better crop for a constantly changing world. We therefore review the state of knowledge on the current use of biotechnology applied to cassava cultivars and its implications for breeding the crop into the future. The history of the development of the first transgenic cassava plant serves as the basis to explore molecular aspects of somatic embryogenesis and friable embryogenic callus production. We analyze complex plant-pathogen interactions to profit from such knowledge to help cassava fight bacterial diseases and look at candidate genes possibly involved in resistance to viruses and whiteflies-the two most important traits of cassava. The review also covers the analyses of main achievements in transgenic-mediated nutritional improvement and mass production of healthy plants by tissue culture and synthetic seeds. Finally, the perspectives of using genome editing and the challenges associated to climate change for further improving the crop are discussed. During the last 30 yr, great advances have been made in cassava using biotechnology, but they need to scale out of the proof of concept to the fields of cassava growers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...