Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Robot AI ; 11: 1305615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577485

RESUMO

Introduction: The teaching process plays a crucial role in the training of professionals. Traditional classroom-based teaching methods, while foundational, often struggle to effectively motivate students. The integration of interactive learning experiences, such as visuo-haptic simulators, presents an opportunity to enhance both student engagement and comprehension. Methods: In this study, three simulators were developed to explore the impact of visuo-haptic simulations on engineering students' engagement and their perceptions of learning basic physics concepts. The study used an adapted end-user computing satisfaction questionnaire to assess students' experiences and perceptions of the simulators' usability and its utility in learning. Results: Feedback from participants suggests a positive reception towards the use of visuo-haptic simulators, highlighting their usefulness in improving the understanding of complex physics principles. Discussion: Results suggest that incorporating visuo-haptic simulations into educational contexts may offer significant benefits, particularly in STEM courses, where traditional methods may be limited. The positive responses from participants underscore the potential of computer simulations to innovate pedagogical strategies. Future research will focus on assessing the effectiveness of these simulators in enhancing students' learning and understanding of these concepts in higher-education physics courses.

2.
J Med Internet Res ; 22(8): e18637, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32788146

RESUMO

BACKGROUND: Digital rectal examination is a difficult examination to learn and teach because of limited opportunities for practice; however, the main challenge is that students and tutors cannot see the finger when it is palpating the anal canal and prostate gland inside the patients. OBJECTIVE: This paper presents an augmented reality system to be used with benchtop models commonly available in medical schools with the aim of addressing the problem of lack of visualization. The system enables visualization of the examining finger, as well as of the internal organs when performing digital rectal examinations. Magnetic tracking sensors are used to track the movement of the finger, and a pressure sensor is used to monitor the applied pressure. By overlaying a virtual finger on the real finger and a virtual model on the benchtop model, students can see through the examination and finger maneuvers. METHODS: The system was implemented in the Unity game engine (Unity Technologies) and uses a first-generation HoloLens (Microsoft Inc) as an augmented reality device. To evaluate the system, 19 participants (9 clinicians who routinely performed digital rectal examinations and 10 medical students) were asked to use the system and answer 12 questions regarding the usefulness of the system. RESULTS: The system showed the movement of an examining finger in real time with a frame rate of 60 fps on the HoloLens and accurately aligned the virtual and real models with a mean error of 3.9 mm. Users found the movement of the finger was realistic (mean 3.9, SD 1.2); moreover, they found the visualization of the finger and internal organs were useful for teaching, learning, and assessment of digital rectal examinations (finger: mean 4.1, SD 1.1; organs: mean 4.6, SD 0.8), mainly targeting a novice group. CONCLUSIONS: The proposed augmented reality system was designed to improve teaching and learning of digital rectal examination skills by providing visualization of the finger and internal organs. The initial user study proved its applicability and usefulness.


Assuntos
Realidade Aumentada , Competência Clínica/normas , Exame Retal Digital/normas , Educação Médica/métodos , Humanos
3.
J Med Syst ; 40(4): 104, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26888655

RESUMO

Medical procedures often involve the use of the tactile sense to manipulate organs or tissues by using special tools. Doctors require extensive preparation in order to perform them successfully; for example, research shows that a minimum of 750 operations are needed to acquire sufficient experience to perform medical procedures correctly. Haptic devices have become an important training alternative and they have been considered to improve medical training because they let users interact with virtual environments by adding the sense of touch to the simulation. Previous articles in the field state that haptic devices enhance the learning of surgeons compared to current training environments used in medical schools (corpses, animals, or synthetic skin and organs). Consequently, virtual environments use haptic devices to improve realism. The goal of this paper is to provide a state of the art review of recent medical simulators that use haptic devices. In particular we focus on stitching, palpation, dental procedures, endoscopy, laparoscopy, and orthopaedics. These simulators are reviewed and compared from the viewpoint of used technology, the number of degrees of freedom, degrees of force feedback, perceived realism, immersion, and feedback provided to the user. In the conclusion, several observations per area and suggestions for future work are provided.


Assuntos
Treinamento por Simulação/métodos , Dentística Operatória/educação , Endoscopia/educação , Feedback Formativo , Humanos , Procedimentos Ortopédicos/educação , Palpação/métodos , Técnicas de Sutura/educação , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...