Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37443557

RESUMO

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder in the world, and it is characterized by the production of different motor and non-motor symptoms which negatively affect speech and language production. For decades, the research community has been working on methodologies to automatically model these biomarkers to detect and monitor the disease; however, although speech impairments have been widely explored, language remains underexplored despite being a valuable source of information, especially to assess cognitive impairments associated with non-motor symptoms. This study proposes the automatic assessment of PD patients using different methodologies to model speech and language biomarkers. One-dimensional and two-dimensional convolutional neural networks (CNNs), along with pre-trained models such as Wav2Vec 2.0, BERT, and BETO, were considered to classify PD patients vs. Healthy Control (HC) subjects. The first approach consisted of modeling speech and language independently. Then, the best representations from each modality were combined following early, joint, and late fusion strategies. The results show that the speech modality yielded an accuracy of up to 88%, thus outperforming all language representations, including the multi-modal approach. These results suggest that speech representations better discriminate PD patients and HC subjects than language representations. When analyzing the fusion strategies, we observed that changes in the time span of the multi-modal representation could produce a significant loss of information in the speech modality, which was likely linked to a decrease in accuracy in the multi-modal experiments. Further experiments are necessary to validate this claim with other fusion methods using different time spans.

2.
NPJ Parkinsons Dis ; 8(1): 163, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434017

RESUMO

Action-concept outcomes are useful targets to identify Parkinson's disease (PD) patients and differentiate between those with and without mild cognitive impairment (PD-MCI, PD-nMCI). Yet, most approaches employ burdensome examiner-dependent tasks, limiting their utility. We introduce a framework capturing action-concept markers automatically in natural speech. Patients from both subgroups and controls retold an action-laden and a non-action-laden text (AT, nAT). In each retelling, we weighed action and non-action concepts through our automated Proximity-to-Reference-Semantic-Field (P-RSF) metric, for analysis via ANCOVAs (controlling for cognitive dysfunction) and support vector machines. Patients were differentiated from controls based on AT (but not nAT) P-RSF scores. The same occurred in PD-nMCI patients. Conversely, PD-MCI patients exhibited reduced P-RSF scores for both texts. Direct discrimination between patient subgroups was not systematic, but it yielded best outcomes via AT scores. Our approach outperformed classifiers based on corpus-derived embeddings. This framework opens scalable avenues to support PD diagnosis and phenotyping.

3.
Neurodegener Dis Manag ; 10(3): 137-157, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32571150

RESUMO

Aim: This paper introduces Apkinson, a mobile application for motor evaluation and monitoring of Parkinson's disease patients. Materials & methods: The App is based on previously reported methods, for instance, the evaluation of articulation and pronunciation in speech, regularity and freezing of gait in walking, and tapping accuracy in hand movement. Results: Preliminary experiments indicate that most of the measurements are suitable to discriminate patients and controls. Significance is evaluated through statistical tests. Conclusion: Although the reported results correspond to preliminary experiments, we think that Apkinson is a very useful App that can help patients, caregivers and clinicians, in performing a more accurate monitoring of the disease progression. Additionally, the mobile App can be a personal health assistant.


Assuntos
Aplicativos Móveis , Doença de Parkinson/fisiopatologia , Smartphone , Idoso , Idoso de 80 Anos ou mais , Feminino , Marcha , Humanos , Masculino , Pessoa de Meia-Idade , Movimento , Índice de Gravidade de Doença , Fala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...