Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(31): 22714-22762, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39035129

RESUMO

In this work, forcefield flexibility parameters were constructed and validated for more than 100 metal-organic frameworks (MOFs). We used atom typing to identify bond types, angle types, and dihedral types associated with bond stretches, angle bends, dihedral torsions, and other flexibility interactions. Our work used Manz's angle-bending and dihedral-torsion model potentials. For a crystal structure containing N atoms in its unit cell, the number of independent flexibility interactions is 3(N atoms - 1). Because the number of bonds, angles, and dihedrals is normally much larger than 3(N atoms - 1), these internal coordinates are redundant. To reduce (but not eliminate) this redundancy, our protocol prunes dihedral types in a way that preserves symmetry equivalency. Next, each dihedral type is classified as non-rotatable, hindered, rotatable, or linear. We introduce a smart selection method that identifies which particular torsion modes are important for each rotatable dihedral type. Then, we computed the force constants for all flexibility interactions together via LASSO regression (i.e., regularized linear least-squares fitting) of the training dataset. LASSO automatically identifies and removes unimportant forcefield interactions. For each MOF, the reference dataset was quantum-mechanically-computed in VASP via DFT with dispersion and included: (i) finite-displacement calculations along every independent atom translation mode, (ii) geometries randomly sampled via ab initio molecular dynamics (AIMD), (iii) the optimized ground-state geometry using experimental lattice parameters, and (iv) rigid torsion scans for each rotatable dihedral type. After training, the flexibility model was validated across geometries that were not part of the training dataset. For each MOF, we computed the goodness of fit (R-squared value) and the root-mean-squared error (RMSE) separately for the training and validation datasets. We compared flexibility models with and without bond-bond cross terms. Even without cross terms, the model yielded R-squared values of 0.910 (avg across all MOFs) ± 0.018 (st. dev.) for atom-in-material forces in the validation datasets. Our SAVESTEPS protocol should find widespread applications to parameterize flexible forcefields for material datasets. We performed molecular dynamics simulations using these flexibility parameters to compute heat capacities and thermal expansion coefficients for two MOFs.

2.
Water Sci Technol ; 82(7): 1370-1379, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33079716

RESUMO

While extensive work has been done on the generation of adsorbents by carbonization of large polymeric structures, few works are currently available for the use of monomeric carbon molecules as precursors during carbonization. In this work we report the formation of a carbon adsorbent material from the carbonization of glucose in the presence of zinc oxide (ZnO) nanoparticle templates. Carbonization at 1,000 °C under inert atmosphere yields a product with Brunauer-Emmett-Teller (BET) surface area of 1,228.19 m2/g and 14.77 nm average pore diameter. Adsorption capacities against methylene blue, 2-naphthol and bisphenol-A at pH 7 were found to be 539 mg/g, 737 mg/g and 563 mg/g, respectively. Our material demonstrates a strong fit with the Langmuir isotherm, and adsorption kinetics show regression values near unity for the pseudo-second order kinetic model. A flow adsorption column was implemented for the remediation of tap water containing 20 mg/L methylene blue and found to quantitatively purify 11.5 L of contaminated water.


Assuntos
Poluentes Ambientais , Nanopartículas , Poluentes Químicos da Água , Glucose , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...