Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 10: 975-984, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31165024

RESUMO

We present the successful growth of few-layer graphene on top of AlN-based solidly mounted resonators (SMR) using a low-temperature chemical vapour deposition (CVD) process assisted by Ni catalysts, and its effective bio-functionalization with antibodies. The SMRs are manufactured on top of fully insulating AlN/SiO2 acoustic mirrors able to withstand the temperatures reached during the CVD growth of graphene (up to 650 °C). The active AlN films, purposely grown with the c-axis tilted, effectively excite shear modes displaying excellent in-liquid performance, with electromechanical coupling and quality factors of around 3% and 150, respectively, which barely vary after graphene integration. Raman spectra reveal that the as-grown graphene is composed of less than five weakly coupled layers with a low density of defects. Two functionalization protocols of the graphene are proposed. The first one, based on a covalent binding approach, starts with a low-damage O2 plasma treatment that introduces a controlled density of defects in graphene, including carboxylic groups. After that, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) chemistry is used to covalently bind streptavidin molecules to the surface of the sensors. The second functionalization protocol is based on the non-covalent bonding of streptavidin on hydrophobic graphene surfaces. The two protocols end with the effective bonding of biotinylated anti-IgG antibodies to the streptavidin, which leaves the surface of the devices ready for possible IgG detection.

2.
Sci Rep ; 7(1): 1367, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28465522

RESUMO

Shear mode solidly mounted resonators (SMRs) are fabricated using an inclined c-axis ZnO grown on a rough Al electrode. The roughness of the Al surface is controlled by changing the substrate temperature during the deposition process to promote the growth of inclined ZnO microcrystals. The optimum substrate temperature to obtain homogeneously inclined c-axis grains in ZnO films is achieved by depositing Al at 100 °C with a surface roughness ~9.2 nm, which caused an inclination angle of ~25° of the ZnO c-axis with respect to the surface normal. Shear mode devices with quality-factors at resonance, Q r and effective electromechanical coupling factors, [Formula: see text], as high as 180 and 3.4% are respectively measured. Mass sensitivities, S m of (4.9 ± 0.1) kHz · cm2/ng and temperature coefficient of frequency (TCF) of ~-67 ppm/K are obtained using this shear mode. The performance of the devices as viscosity sensors and biosensors is demonstrated by determining the frequency shifts of water-ethanol mixtures and detection of Rabbit immunoglobin G (IgG) whole molecule (H&L) respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...