Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spinal Cord ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898145

RESUMO

STUDY DESIGN: Double-blind, randomized, placebo-controlled, parallel-group multicentric phase IIA clinical trial. OBJECTIVE: To assess the safety and tolerability of oral administration of NFX-88 in subjects with chronic spinal cord injury (SCI) and explore its efficacy in pain control. SETTING: A total of 7 spinal cord injury rehabilitation units in Spain. METHODS: A total of 61 adult with traumatic complete or incomplete spinal cord injury (C4-T12 level), were randomised 1:1:1:1 to a placebo, NFX88 1.05 g, 2.1 g, 4.2 g/day for up to 12 weeks. The placebo or NFX-88 was administered as add-on therapy to pre-existing pregabalin (150-300 mg per day). Safety and tolerability were evaluated, and the Visual Analogue Scale (VAS) was the primary measure to explore the efficacy of NFX-88 in pain control. RESULTS: No severe treatment-related adverse effects were reported for any of the four study groups. 44 SCI individuals completed the study and were analysed. The data obtained from the VAS analysis and the PainDETECT Questionnaire (PD-Q) suggested that the combination of NFX88 with pregabalin is more effective than pregabalin with placebo at reducing neuropathic pain (NP) in individuals with SCI and that the dose 2.10 g/day causes the most dramatic pain relief. CONCLUSIONS: NFX88 treatment was found to be highly safe and well tolerated, with the dose of 2.10 g/day being the most effective at causing pain relief. Thus, the promising efficacy of this first-in-class lipid mediator deserves further consideration in future clinical trials.

2.
Front Cell Dev Biol ; 12: 1403128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665431

RESUMO

[This corrects the article DOI: 10.3389/fcell.2024.1395922.].

3.
4.
Front Microbiol ; 14: 1244325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869668

RESUMO

Antimicrobial activity of many AMPs can be improved by lysine-to-arginine substitution due to a more favourable interaction of arginine guanidinium moiety with bacterial membranes. In a previous work, the structural and functional characterization of an amphipathic antimicrobial peptide named RiLK1, including lysine and arginine as the positively charged amino acids in its sequence, was reported. Specifically, RiLK1 retained its ß-sheet structure under a wide range of environmental conditions (temperature, pH, and ionic strength), and exhibited bactericidal activity against Gram-positive and Gram-negative bacteria and fungal pathogens with no evidence of toxicity on mammalian cells. To further elucidate the influence of a lysine-to-arginine replacement on RiLK1 conformational properties, antimicrobial activity and peptide-liposome interaction, a new RiLK1-derivative, named RiLK3, in which the lysine is replaced with an arginine residue, was projected and characterised in comparison with its parental compound. The results evidenced that lysine-to-arginine mutation not only did not assure an improvement in the antimicrobial potency of RiLK1 in terms of bactericidal, virucidal and fungicidal activities, but rather it was completely abolished against the hepatitis A virus. Therefore, RiLK1 exhibited a wide range of antimicrobial activity like other cationic peptides, although the exact mechanisms of action are not completely understood. Moreover, tryptophan fluorescence measurements confirmed that RiLK3 bound to negatively charged lipid vesicles with an affinity lower than that of RiLK1, although no substantial differences from the structural and self-assembled point of view were evidenced. Therefore, our findings imply that antimicrobial efficacy and selectivity are affected by several complex and interrelated factors related to substitution of lysine with arginine, such as their relative proportion and position. In this context, this study could provide a better rationalisation for the optimization of antimicrobial peptide sequences, paving the way for the development of novel AMPs with broad applications.

5.
Br J Cancer ; 129(5): 811-818, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37488446

RESUMO

BACKGROUND: The first-in-class brain-penetrating synthetic hydroxylated lipid idroxioleic acid (2-OHOA; sodium 2-hydroxyoleate), activates sphingomyelin synthase expression and regulates membrane-lipid composition and mitochondrial energy production, inducing cancer cell autophagy. We report the findings of a multicentric first-in-human Phase 1/2A trial (NCT01792310) of 2-OHOA, identifying the maximum tolerated dose (MTD) and assessing safety and preliminary efficacy. METHODS: We performed an open-label, non-randomised trial to evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics and anti-tumour activity of daily oral treatment with 2-OHOA monotherapy (BID/TID) in 54 patients with glioma and other advanced solid tumours. A dose-escalation phase using a standard 3 + 3 design was performed to determine safety and tolerability. This was followed by two expansion cohorts at the MTD to determine the recommended Phase-2 dose (RP2D). RESULTS: In total, 32 recurrent patients were enrolled in the dose-escalation phase (500-16,000 mg/daily). 2-OHOA was rapidly absorbed with dose-proportional exposure. Treatment was well-tolerated overall, with reversible grade 1-2 nausea, vomiting, and diarrhoea as the most common treatment-related adverse events (AEs). Four patients had gastrointestinal dose-limiting toxicities (DLTs) of nausea, vomiting, diarrhoea (three patients at 16,000 mg and one patient at 12,000 mg), establishing an RP2D at 12,000 mg/daily. Potential activity was seen in patients with recurrent high-grade gliomas (HGG). Of the 21 patients with HGG treated across the dose escalation and expansion, 5 (24%) had the clinical benefit (RANO CR, PR and SD >6 cycles) with one exceptional response lasting >2.5 years. CONCLUSIONS: 2-OHOA demonstrated a good safety profile and encouraging activity in this difficult-to-treat malignant brain-tumour patient population, placing it as an ideal potential candidate for the treatment of glioma and other solid tumour malignancies. CLINICAL TRIAL REGISTRATION: EudraCT registration number: 2012-001527-13; Clinicaltrials.gov registration number: NCT01792310.


Assuntos
Glioma , Neoplasias , Humanos , Diarreia , Glioma/tratamento farmacológico , Dose Máxima Tolerável , Náusea , Recidiva Local de Neoplasia , Neoplasias/tratamento farmacológico , Esfingolipídeos/uso terapêutico , Vômito
6.
Biomedicines ; 11(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37239036

RESUMO

Pediatric neurological tumors are a heterogeneous group of cancers, many of which carry a poor prognosis and lack a "standard of care" therapy. While they have similar anatomic locations, pediatric neurological tumors harbor specific molecular signatures that distinguish them from adult brain and other neurological cancers. Recent advances through the application of genetics and imaging tools have reshaped the molecular classification and treatment of pediatric neurological tumors, specifically considering the molecular alterations involved. A multidisciplinary effort is ongoing to develop new therapeutic strategies for these tumors, employing innovative and established approaches. Strikingly, there is increasing evidence that lipid metabolism is altered during the development of these types of tumors. Thus, in addition to targeted therapies focusing on classical oncogenes, new treatments are being developed based on a broad spectrum of strategies, ranging from vaccines to viral vectors, and melitherapy. This work reviews the current therapeutic landscape for pediatric brain tumors, considering new emerging treatments and ongoing clinical trials. In addition, the role of lipid metabolism in these neoplasms and its relevance for the development of novel therapies are discussed.

7.
Biomedicines ; 11(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36831093

RESUMO

GPCRs receive signals from diverse messengers and activate G proteins that regulate downstream signaling effectors. Efficient signaling is achieved through the organization of these proteins in membranes. Thus, protein-lipid interactions play a critical role in bringing G proteins together in specific membrane microdomains with signaling partners. Significantly, the molecular basis underlying the membrane distribution of each G protein isoform, fundamental to fully understanding subsequent cell signaling, remains largely unclear. We used model membranes with lipid composition resembling different membrane microdomains, and monomeric, dimeric and trimeric Gi proteins with or without single and multiple mutations to investigate the structural bases of G protein-membrane interactions. We demonstrated that cationic amino acids in the N-terminal region of the Gαi1 and C-terminal region of the Gγ2 subunit, as well as their myristoyl, palmitoyl and geranylgeranyl moieties, define the differential G protein form interactions with membranes containing different lipid classes (PC, PS, PE, SM, Cho) and the various microdomains they may form (Lo, Ld, PC bilayer, charged, etc.). These new findings in part explain the molecular basis underlying amphitropic protein translocation to membranes and localization to different membrane microdomains and the role of these interactions in cell signal propagation, pathophysiology and therapies targeted to lipid membranes.

8.
Int J Mol Sci ; 23(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36293249

RESUMO

Since penicillin was discovered, antibiotics have been critical in the fight against infections. However, antibiotic misuse has led to drug resistance, which now constitutes a serious health problem. In this context, antimicrobial peptides (AMPs) constitute a natural group of short proteins, varying in structure and length, that act against certain types of bacterial pathogens. The antimicrobial peptide 1018-K6 (VRLIVKVRIWRR- NH2) has significant bactericidal and antibiofilm activity against Listeria monocytogenes isolates, and against different strains and serotypes of Salmonella. Here, the mechanism of action of 1018-K6 was explored further to understand the peptide-membrane interactions relevant to its activity, and to define their determinants. We combined studies with model synthetic membranes (liposomes) and model biological membranes, assessing the absorption maximum and the quenching of 1018-K6 fluorescence in aqueous and lipid environments, the self-quenching of carboxyfluorescein, as well as performing lipid sedimentation assays. The data obtained reflect the differential interactions of the 1018-K6 peptide with eukaryotic and prokaryotic membranes, and the specific interactions and mechanisms of action in the three prokaryotic species studied: Salmonella Typhimurium2GN, Escherichia coli3GN, and Staphylococcus aureus3GP. The AMP 1018-K6 is a candidate to prevent (food preservation) or treat (antibiotic use) infections caused by certain pathogenic bacteria, especially some that are resistant to current antibiotics.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Listeria monocytogenes , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Escherichia coli , Eucariotos , Lipídeos , Lipossomos/química , Testes de Sensibilidade Microbiana , Penicilinas
9.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077299

RESUMO

Pancreatic cancer has a high mortality rate due to its aggressive nature and high metastatic rate. When coupled to the difficulties in detecting this type of tumor early and the lack of effective treatments, this cancer is currently one of the most important clinical challenges in the field of oncology. Melitherapy is an innovative therapeutic approach that is based on modifying the composition and structure of cell membranes to treat different diseases, including cancers. In this context, 2-hydroxycervonic acid (HCA) is a melitherapeutic agent developed to combat pancreatic cancer cells, provoking the programmed cell death by apoptosis of these cells by inducing ER stress and triggering the production of ROS species. The efficacy of HCA was demonstrated in vivo, alone and in combination with gemcitabine, using a MIA PaCa-2 cell xenograft model of pancreatic cancer in which no apparent toxicity was evident. HCA is metabolized by α-oxidation to C21:5n-3 (heneicosapentaenoic acid), which in turn also showed anti-proliferative effect in these cells. Given the unmet clinical needs associated with pancreatic cancer, the data presented here suggest that the use of HCA merits further study as a potential therapy for this condition.


Assuntos
Estresse do Retículo Endoplasmático , Neoplasias Pancreáticas , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Ácidos Docosa-Hexaenoicos/uso terapêutico , Humanos , Hidroxiácidos , Imidazóis , Neoplasias Pancreáticas/patologia , Sulfonamidas , Tiofenos , Neoplasias Pancreáticas
10.
Cells ; 11(3)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35159387

RESUMO

The synthetic fatty acid 2-hydroxyoleic acid (2OHOA) has been extensively investigated as a cancer therapy mainly based on its regulation of membrane lipid composition and structure, activating various cell fate pathways. We discovered, additionally, that 2OHOA can uncouple oxidative phosphorylation, but this has never been demonstrated mechanistically. Here, we explored the effect of 2OHOA on mitochondria isolated by ultracentrifugation from U118MG glioblastoma cells. Mitochondria were analyzed by shotgun lipidomics, molecular dynamic simulations, spectrophotometric assays for determining respiratory complex activity, mass spectrometry for assessing beta oxidation and Seahorse technology for bioenergetic profiling. We showed that the main impact of 2OHOA on mitochondrial lipids is their hydroxylation, demonstrated by simulations to decrease co-enzyme Q diffusion in the liquid disordered membranes embedding respiratory complexes. This decreased co-enzyme Q diffusion can explain the inhibition of disjointly measured complexes I-III activity. However, it doesn't explain how 2OHOA increases complex IV and state 3 respiration in intact mitochondria. This increased respiration probably allows mitochondrial oxidative phosphorylation to maintain ATP production against the 2OHOA-mediated inhibition of glycolytic ATP production. This work correlates 2OHOA function with its modulation of mitochondrial lipid composition, reflecting both 2OHOA anticancer activity and adaptation to it by enhancement of state 3 respiration.


Assuntos
Antineoplásicos , Trifosfato de Adenosina , Antineoplásicos/farmacologia , Mitocôndrias/metabolismo , Ácidos Oleicos , Respiração
11.
Membranes (Basel) ; 11(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34940418

RESUMO

Membranes are mainly composed of a lipid bilayer and proteins, constituting a checkpoint for the entry and passage of signals and other molecules. Their composition can be modulated by diet, pathophysiological processes, and nutritional/pharmaceutical interventions. In addition to their use as an energy source, lipids have important structural and functional roles, e.g., fatty acyl moieties in phospholipids have distinct impacts on human health depending on their saturation, carbon length, and isometry. These and other membrane lipids have quite specific effects on the lipid bilayer structure, which regulates the interaction with signaling proteins. Alterations to lipids have been associated with important diseases, and, consequently, normalization of these alterations or regulatory interventions that control membrane lipid composition have therapeutic potential. This approach, termed membrane lipid therapy or membrane lipid replacement, has emerged as a novel technology platform for nutraceutical interventions and drug discovery. Several clinical trials and therapeutic products have validated this technology based on the understanding of membrane structure and function. The present review analyzes the molecular basis of this innovative approach, describing how membrane lipid composition and structure affects protein-lipid interactions, cell signaling, disease, and therapy (e.g., fatigue and cardiovascular, neurodegenerative, tumor, infectious diseases).

12.
Membranes (Basel) ; 11(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34940446

RESUMO

Membrane Lipid Replacement (MLR) uses natural membrane lipid supplements to safely replace damaged, oxidized lipids in membranes in order to restore membrane function, decrease symptoms and improve health. Oral MLR supplements contain mixtures of cell membrane glycerolphospholipids, fatty acids, and other lipids, and can be used to replace and remove damaged cellular and intracellular membrane lipids. Membrane injury, caused mainly by oxidative damage, occurs in essentially all chronic and acute medical conditions, including cancer and degenerative diseases, and in normal processes, such as aging and development. After ingestion, the protected MLR glycerolphospholipids and other lipids are dispersed, absorbed, and internalized in the small intestines, where they can be partitioned into circulating lipoproteins, globules, liposomes, micelles, membranes, and other carriers and transported in the lymphatics and blood circulation to tissues and cellular sites where they are taken in by cells and partitioned into various cellular membranes. Once inside cells, the glycerolphospholipids and other lipids are transferred to various intracellular membranes by lipid carriers, globules, liposomes, chylomicrons, or by direct membrane-membrane interactions. The entire process appears to be driven by 'bulk flow' or mass action principles, where surplus concentrations of replacement lipids can stimulate the natural exchange and removal of damaged membrane lipids while the replacement lipids undergo further enzymatic alterations. Clinical studies have demonstrated the advantages of MLR in restoring membrane and organelle function and reducing fatigue, pain, and other symptoms in chronic illness and aging patients.

13.
Cancers (Basel) ; 13(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34503102

RESUMO

Glioblastoma (GBM) is the most common and aggressive type of primary brain tumor in adults, and the median survival of patients with GBM is 14.5 months. Melitherapy is an innovative therapeutic approach to treat different diseases, including cancer, and it is based on the regulation of cell membrane composition and structure, which modulates relevant signal pathways. Here, we have tested the effects of 2-hydroxycervonic acid (HCA) on GBM cells and xenograft tumors. HCA was taken up by cells and it compromised the survival of several human GBM cell lines in vitro, as well as the in vivo growth of xenograft tumors (mice) derived from these cells. HCA appeared to enhance ER stress/UPR signaling, which consequently induced autophagic cell death of the GBM tumor cells. This negative effect of HCA on GBM cells may be mediated by the JNK/c-Jun/CHOP/BiP axis, and it also seems to be provoked by the cellular metabolite of HCA, C21:5n-3 (heneicosapentaenoic acid). These results demonstrate the efficacy of the melitherapeutic treatment used and the potential of using C21:5n-3 as an efficacy biomarker for this treatment. Given the safety profile in animal models, the data presented here provide evidence that HCA warrants further clinical study as a potential therapy for GBM, currently an important unmet medical need.

14.
Front Physiol ; 12: 782525, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126175

RESUMO

Cell proliferation in pancreatic cancer is determined by a complex network of signaling pathways. Despite the extensive understanding of these protein-mediated signaling processes, there are no significant drug discoveries that could considerably improve a patient's survival. However, the recent understanding of lipid-mediated signaling gives a new perspective on the control of the physiological state of pancreatic cells. Lipid signaling plays a major role in the induction of cytocidal autophagy and can be exploited using synthetic lipids to induce cell death in pancreatic cancer cells. In this work, we studied the activity of a synthetic lipid, tri-2-hydroxyarachidonein (TGM4), which is a triacylglycerol mimetic that contains three acyl moieties with four double bonds each, on cellular and in vivo models of pancreatic cancer. We demonstrated that TGM4 inhibited proliferation of Mia-PaCa-2 (human pancreatic carcinoma) and PANC-1 (human pancreatic carcinoma of ductal cells) in in vitro models and in an in vivo xenograft model of Mia-PaCa-2 cells. In vitro studies demonstrated that TGM4 induced cell growth inhibition paralleled with an increased expression of PARP and CHOP proteins together with the presence of sub-G0 cell cycle events, indicating cell death. This cytocidal effect was associated with elevated ER stress or autophagy markers such as BIP, LC3B, and DHFR. In addition, TGM4 activated peroxisome proliferator-activated receptor gamma (PPAR-γ), which induced elevated levels of p-AKT and downregulation of p-c-Jun. We conclude that TGM4 induced pancreatic cell death by activation of cytocidal autophagy. This work highlights the importance of lipid signaling in cancer and the use of synthetic lipid structures as novel and potential approaches to treat pancreatic cancer and other neoplasias.

16.
Front Cell Dev Biol ; 8: 164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292781

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease with as yet no efficient therapies, the pathophysiology of which is still largely unclear. Many drugs and therapies have been designed and developed in the past decade to stop or slow down this neurodegenerative process, although none has successfully terminated a phase-III clinical trial in humans. Most therapies have been inspired by the amyloid cascade hypothesis, which has more recently come under question due to the almost complete failure of clinical trials of anti-amyloid/tau therapies to date. To shift the perspective for the design of new AD therapies, membrane lipid therapy has been tested, which assumes that brain lipid alterations lie upstream in the pathophysiology of AD. A hydroxylated derivative of docosahexaenoic acid was used, 2-hydroxy-docosahexaenoic acid (DHA-H), which has been tested in a number of animal models and has shown efficacy against hallmarks of AD pathology. Here, for the first time, DHA-H is shown to undergo α-oxidation to generate the heneicosapentaenoic acid (HPA, C21:5, n-3) metabolite, an odd-chain omega-3 polyunsaturated fatty acid that accumulates in cell cultures, mouse blood plasma and brain tissue upon DHA-H treatment, reaching higher concentrations than those of DHA-H itself. Interestingly, DHA-H does not share metabolic routes with its natural analog DHA (C22:6, n-3) but rather, DHA-H and DHA accumulate distinctly, both having different effects on cell fatty acid composition. This is partly explained because DHA-H α-hydroxyl group provokes steric hindrance on fatty acid carbon 1, which in turn leads to diminished incorporation into cell lipids and accumulation as free fatty acid in cell membranes. Finally, DHA-H administration to mice elevated the brain HPA levels, which was directly and positively correlated with cognitive spatial scores in AD mice, apparently in the absence of DHA-H and without any significant change in brain DHA levels. Thus, the evidence presented in this work suggest that the metabolic conversion of DHA-H into HPA could represent a key event in the therapeutic effects of DHA-H against AD.

17.
Int J Mol Sci ; 20(9)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052427

RESUMO

Biological membranes are key elements for the maintenance of cell architecture and physiology. Beyond a pure barrier separating the inner space of the cell from the outer, the plasma membrane is a scaffold and player in cell-to-cell communication and the initiation of intracellular signals among other functions. Critical to this function is the plasma membrane compartmentalization in lipid microdomains that control the localization and productive interactions of proteins involved in cell signal propagation. In addition, cells are divided into compartments limited by other membranes whose integrity and homeostasis are finely controlled, and which determine the identity and function of the different organelles. Here, we review current knowledge on membrane lipid composition in the plasma membrane and endomembrane compartments, emphasizing its role in sustaining organelle structure and function. The correct composition and structure of cell membranes define key pathophysiological aspects of cells. Therefore, we explore the therapeutic potential of manipulating membrane lipid composition with approaches like membrane lipid therapy, aiming to normalize cell functions through the modification of membrane lipid bilayers.


Assuntos
Membrana Celular/efeitos dos fármacos , Ácidos Graxos Insaturados/farmacologia , Lipídeos de Membrana/química , Doenças Metabólicas/tratamento farmacológico , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Compartimento Celular , Membrana Celular/química , Membrana Celular/metabolismo , Ácidos Graxos Insaturados/uso terapêutico , Humanos , Lipídeos de Membrana/metabolismo
18.
Oncotarget ; 10(26): 2486-2507, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-31069012

RESUMO

The plasma membrane is an attractive target for new anticancer drugs, not least because regulating its lipid structure can control multiple signaling pathways involved in cancer cell proliferation, differentiation and survival. Accordingly, the novel anticancer drug hydroxytriolein (HTO) was designed to interact with and regulate the composition and structure of the membrane, which in turn controls the interaction of amphitropic signaling membrane proteins with the lipid bilayer. Changes in signaling provoked by HTO impair the growth of triple negative breast cancer (TNBC) cells, aggressive breast tumor cells that have a worse prognosis than other types of breast cancers and for which there is as yet no effective targeted therapy. HTO alters the lipid composition and structure of cancer cell membranes, inhibiting the growth of MDA-MB-231 and BT-549 TNBC cells in vitro. Depending on the cellular context, HTO could regulate two pathways involved in TNBC cell proliferation. On the one hand, HTO might stimulate ERK signaling and induce TNBC cell autophagy, while on the other, it could increase dihydroceramide and ceramide production, which would inhibit Akt independently of EGFR activation and provoke cell death. In vivo studies using a model of human TNBC show that HTO and its fatty acid constituent (2-hydroxyoleic acid) impair tumor growth, with no undesired side effects. For these reasons, HTO appears to be a promising anticancer molecule that targets the lipid bilayer (membrane-lipid therapy). By regulating membrane lipids, HTO controls important signaling pathways involved in cancer cell growth, the basis of its pharmacological efficacy and safety.

19.
Cancers (Basel) ; 11(1)2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646599

RESUMO

Background: 2-Hydroxyoleic acid (2OHOA) is particularly active against glioblastoma multiforme (GBM) and successfully finished a phase I/IIA trial in patients with glioma and other advanced solid tumors. However, its mechanism of action is not fully known. Methods: The relationship between SMS1 and SMS2 expressions (mRNA) and overall survival in 329 glioma patients was investigated, and so was the correlation between SMS expression and 2OHOA's efficacy. The opposing role of SMS isoforms in 2OHOA's mechanism of action and in GBM cell growth, differentiation and death, was studied overexpressing or silencing them in human GBM cells. Results: Patients with high-SMS1 plus low-SMS2 expression had a 5-year survival ~10-fold higher than patients with low-SMS1 plus high-SMS2 expression. SMS1 and SMS2 also had opposing effect on GBM cell survival and 2OHOA's IC50 correlated with basal SMS1 levels and treatment induced changes in SMS1/SMS2 ratio. SMSs expression disparately affected 2OHOA's cancer cell proliferation, differentiation, ER-stress and autophagy. Conclusions: SMS1 and SMS2 showed opposite associations with glioma patient survival, glioma cell growth and response to 2OHOA treatment. SMSs signature could constitute a valuable prognostic biomarker, with high SMS1 and low SMS2 being a better disease prognosis. Additionally, low basal SMS1 mRNA levels predict positive response to 2OHOA.

20.
Biosci Rep ; 39(1)2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30602451

RESUMO

This work tests bioenergetic and cell-biological implications of the synthetic fatty acid Minerval (2-hydroxyoleic acid), previously demonstrated to act by activation of sphingomyelin synthase in the plasma membrane (PM) and lowering of phosphatidylethanolamine (PE) and phosphatidylcholine (PC) and their carcinogenic signaling. We show here that Minerval also acts, selectively in cancer cell lines, as an ATP depleting uncoupler of mitochondrial oxidative phosphorylation (OxPhos). As a function of its exposure time, Minerval compromised the capacity of glioblastoma U87-MG cells to compensate for aberrant respiration by up-modulation of glycolysis. This effect was not exposure time-dependent in the lung carcinoma A549 cell line, which was more sensitive to Minerval. Compared with OxPhos inhibitors FCCP (uncoupler), rotenone (electron transfer inhibitor), and oligomycin (F1F0-ATPase inhibitor), Minerval action was similar only to that of FCCP. This similarity was manifested by mitochondrial membrane potential (MMP) depolarization, facilitation of oxygen consumption rate (OCR), restriction of mitochondrial and cellular reactive oxygen species (ROS) generation and mitochondrial fragmentation. Additionally, compared with other OxPhos inhibitors, Minerval uniquely induced ER stress in cancer cell lines. These new modes of action for Minerval, capitalizing on the high fatty acid requirements of cancer cells, can potentially enhance its cancer-selective toxicity and improve its therapeutic capacity.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Ácidos Oleicos/farmacologia , Células A549 , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...