Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(16): e2310196, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350734

RESUMO

Developing high-performance carbonaceous anode materials for sodium-ion batteries (SIBs) is still a grand quest for a more sustainable future of energy storage. Introducing sulfur within a carbon framework is one of the most promising attempts toward the development of highly efficient anode materials. Herein, a microporous sulfur-rich carbon anode obtained from a liquid sulfur-containing oligomer is introduced. The sodium storage mechanism shifts from surface-controlled to diffusion-controlled at higher synthesis temperatures. The different storage mechanisms and electrode performances are found to be independent of the bare electrode material's interplanar spacing. Therefore, these differences are attributed to an increased microporosity and a thiophene-rich chemical environment. The combination of these properties enables extending the plateau region to higher potential and achieving reversible overpotential sodium storage. Moreover, in-operando small-angle X-ray scattering (SAXS) reveals reversible electron density variations within the pore structure, in good agreement with the pore-filling sodium storage mechanism occurring in hard carbons (HCs). Eventually, the depicted framework will enable the design of high-performance anode materials for sodium-ion batteries with competitive energy density.

2.
Nanoscale Adv ; 4(15): 3136-3141, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36132808

RESUMO

Polymerization of multifunctional thiol-ene molecules is attractive as a proof of concept in photopolymerization, yet the formation of a bead structure is highly restricted. This manuscript will show graphitic carbon nitride based liquid-liquid printing and subsequent photopolymerization to form thiol-ene polymer beads with extreme simplicity and potential scalability.

3.
Beilstein J Org Chem ; 17: 1323-1334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136012

RESUMO

Hydrogels are a special class of crosslinked hydrophilic polymers with a high water content through their porous structures. Post-modifications of hydrogels propose an attractive platform so that a variety of fresh functions, which are not arising from initial monomers, could be accessible on a parental network. Photoinduced post-modification of hydrogels by embedding semiconductor nanosheets would be of high interest and novelty. Here, a metal-free semiconductor graphitic carbon nitride (g-CN)-embedded hydrogel as an initial network was synthesized via redox-couple initiation under dark conditions. Post-photomodification of so-formed hydrogel, thanks to the photoactivity of the embedded g-CN nanosheets, was exemplified in two scenarios. The synthesis of 'hydrophobic hydrogel' is reported and its application in delayed cation delivery was investigated. Furthermore, pores of the initial hydrogel were modified by the formation of a secondary polymer network. Such a facile and straightforward synthetic protocol to manufacture functional soft materials will be of high interest in near future by the means of catalysis and agricultural delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...