Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1296: 342338, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401930

RESUMO

BACKGROUND: Preterm birth (PTB) is a leading cause of neonatal mortality, such that the need for a rapid and accurate assessment for PTB risk is critical. Here, we developed a 3D printed microfluidic system that integrated solid-phase extraction (SPE) and microchip electrophoresis (µCE) of PTB biomarkers, enabling the combination of biomarker enrichment and labeling with µCE separation and fluorescence detection. RESULTS: Reversed-phase SPE monoliths were photopolymerized in 3D printed devices. Microvalves in the device directed sample between the SPE monolith and the injection cross-channel in the serpentine µCE channel. Successful on-chip preconcentration, labeling and µCE separation of four PTB-related polypeptides were demonstrated in these integrated microfluidic devices. We further show the ability of these devices to handle complex sample matrices through the successful analysis of labeled PTB biomarkers spiked into maternal blood serum. The detection limit was 7 nM for the PTB biomarker, corticotropin releasing factor, in 3D printed SPE-µCE integrated devices. SIGNIFICANCE: This work represents the first successful demonstration of integration of SPE and µCE separation of disease-linked biomarkers in 3D printed microfluidic devices. These studies open up promising possibilities for rapid bioanalysis of medically relevant analytes.


Assuntos
Eletroforese em Microchip , Nascimento Prematuro , Feminino , Recém-Nascido , Humanos , Eletroforese em Microchip/métodos , Nascimento Prematuro/diagnóstico , Biomarcadores/análise , Extração em Fase Sólida/métodos , Dispositivos Lab-On-A-Chip , Impressão Tridimensional
2.
J Chromatogr A ; 1706: 464242, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37595419

RESUMO

We employed digital light processing-stereolithography 3D printing to create microfluidic devices with different designs for microchip electrophoresis (µCE). Short or long straight channel, and two- or four-turn serpentine channel microfluidic devices with separation channel lengths of 1.3, 3.1, 3.0, and 4.7 cm, respectively, all with a cross injector design, were fabricated. We measured current as a function of time and voltage to determine a separation time window and conditions for the onset of Joule heating in these designs. Separations in these devices were evaluated by performing µCE and measuring theoretical plate counts for electric field strengths near and above the onset of Joule heating, with fluorescently labeled glycine and phenylalanine as model analytes. We further demonstrated µCE of peptides and proteins related to preterm birth risk, showing increased peak capacity and resolution compared to previous results with 3D printed microdevices. These results mark an important step forward in the use of 3D printed microfluidic devices for rapid bioanalysis by µCE.


Assuntos
Eletroforese em Microchip , Nascimento Prematuro , Recém-Nascido , Feminino , Humanos , Nascimento Prematuro/diagnóstico , Dispositivos Lab-On-A-Chip , Biomarcadores , Impressão Tridimensional
3.
Trends Analyt Chem ; 1622023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37008739

RESUMO

3D printing, an additive manufacturing technology, has made significant inroads into improving systems for bioanalysis in recent years. This approach is particularly powerful due to the ease and flexibility in rapidly creating novel and complex designs for analytical applications. As such, 3D printing offers an emerging technology for creating systems for electrophoretic analysis. Here, we review 3D printing work on improving and miniaturizing capillary electrophoresis (CE), emphasizing publications from 2019‒2022. We describe enabling uses of 3D printing in interfacing upstream sample preparation or downstream detection with CE. Recent developments in miniaturized CE enabled by 3D printing are also elaborated, including key areas where 3D printing could further improve over the current state-of-the-art. Lastly, we highlight promising future trends for using 3D printing in miniaturizing CE and the significant potential for innovative advancements. 3D printing is poised to play a key role in moving forward miniaturized CE in the coming years.

4.
Mikrochim Acta ; 189(5): 204, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484354

RESUMO

A 3D printed, automated, pressure-driven injection microfluidic system for microchip electrophoresis (µCE) of preterm birth (PTB)-related peptides and proteins has been developed. Functional microvalves were formed, either with a membrane thickness of 5 µm and a layer exposure time of 450 ms or with a membrane thickness of 10 µm and layer exposure times of 300-350 ms. These valves allowed for control of fluid flow in device microchannels during sample injection for µCE separation. Device design and µCE conditions using fluorescently labeled amino acids were optimized. A sample injection time of 0.5 s and a separation voltage of 450 V (460 V/cm) yielded the best separation efficiency and resolution. We demonstrated the first µCE separation with pressure-driven injection in a 3D printed microfluidic device using fluorescently labeled PTB biomarkers and 532 nm laser excitation. Detection limits for two PTB biomarkers, peptide 1 and peptide 2, for an injection time of 1.5 s were 400 pM and 15 nM, respectively, and the linear detection range for peptide 2 was 50-400 nM. This 3D printed microfluidic system holds promise for future integration of on-chip sample preparation processes with µCE, offering promising possibilities for PTB risk assessment.


Assuntos
Eletroforese em Microchip , Nascimento Prematuro , Biomarcadores/análise , Eletroforese em Microchip/métodos , Feminino , Humanos , Recém-Nascido , Dispositivos Lab-On-A-Chip , Peptídeos , Gravidez , Nascimento Prematuro/diagnóstico , Impressão Tridimensional
5.
Analyst ; 147(4): 734-743, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35103723

RESUMO

In an effort to develop biomarker-based diagnostics for preterm birth (PTB) risk, we created 3D printed microfluidic devices with multiplexed immunoaffinity monoliths to selectively extract multiple PTB biomarkers. The equilibrium dissociation constant for each monoclonal antibody toward its target PTB biomarker was determined. We confirmed the covalent attachment of three different individual antibodies to affinity monoliths using fluorescence imaging. Three different PTB biomarkers were successfully extracted from human blood serum using their respective single-antibody columns. Selective binding of each antibody toward its target biomarker was observed. Finally, we extracted and eluted three PTB biomarkers from depleted human blood serum in multiplexed immunoaffinity columns in 3D printed microfluidic devices. This is the first demonstration of multiplexed immunoaffinity extraction of PTB biomarkers in 3D printed microfluidic devices.


Assuntos
Dispositivos Lab-On-A-Chip , Nascimento Prematuro , Biomarcadores , Humanos , Recém-Nascido , Nascimento Prematuro/diagnóstico , Impressão Tridimensional , Soro
6.
Anal Bioanal Chem ; 414(1): 167-180, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34345949

RESUMO

Microfluidic devices can provide a versatile, cost-effective platform for disease diagnostics and risk assessment by quantifying biomarkers. In particular, simultaneous testing of several biomarkers can be powerful. Here, we critically review work from the previous 4 years up to February 2021 on developing microfluidic devices for multiplexed detection of biomarkers from samples. We focus on two principal approaches: electrical and optical detection methods that can distinguish and quantify biomarkers. Both electrical and spectroscopic multiplexed detection strategies are being employed to reach limits of detection below clinical sample levels. Some of the most promising strategies for point-of-care assays involve inexpensive materials such as paper-based microfluidic devices, or portable and accessible detectors such as smartphones. This review does not comprehensively cover all multiplexed microfluidic biomarker studies, but rather provides a critical evaluation of key work and suggests promising prospects for future advancement in this field. Electrical and optical multiplexing are powerful approaches for microfluidic biomarker analysis.


Assuntos
Biomarcadores/química , Técnicas Eletroquímicas/instrumentação , Dispositivos Lab-On-A-Chip , Dispositivos Ópticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...