Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 48: 109105, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37095754

RESUMO

The data presented in this article are related to the research paper entitled "Observation of night-time emissions of the Earth in the near UV range from the International Space Station with the Mini-EUSO detector" (Remote Sensing of Environment, Volume 284, January 2023, 113336, https://doi.org/10.1016/j.rse.2022.113336). The data have been acquired with the Mini-EUSO detector, an UV telescope operating in the range 290-430 nm and located inside the International Space Station. The detector was launched in August 2019, and it has started operations from the nadir-facing UV-transparent window in the Russian Zvezda module in October 2019. The data presented here refer to 32 sessions acquired between 2019-11-19 and 2021-05-06. The instrument consists of a Fresnel-lens optical system and a focal surface composed of 36 multi-anode photomultiplier tubes, each with 64 channels, for a total of 2304 channels with single photon counting sensitivity. The telescope, with a square field-of-view of 44°, has a spatial resolution on the Earth surface of 6.3 km and saves triggered transient phenomena with a temporal resolution of 2.5 µs and 320 µs. The telescope also operates in continuous acquisition at a 40.96 ms scale. In this article, large-area night-time UV maps obtained processing the 40.96 ms data, taking averages over regions of some specific geographical areas (e.g., Europe, North America) and over the entire globe, are presented. Data are binned into 0.1° × 0.1° or 0.05° × 0.05° cells (depending on the scale of the map) over the Earth's surface. Raw data are made available in the form of tables (latitude, longitude, counts) and .kmz files (containing the .png images). These are - to the best of our knowledge - the highest sensitivity data in this wavelength range and can be of use to various disciplines.

2.
Space Sci Rev ; 218(1): 3, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35153338

RESUMO

EUSO-Balloon is a pathfinder for JEM-EUSO, the mission concept of a spaceborne observatory which is designed to observe Ultra-High Energy Cosmic Ray (UHECR)-induced Extensive Air Showers (EAS) by detecting their UltraViolet (UV) light tracks "from above." On August 25, 2014, EUSO-Balloon was launched from Timmins Stratospheric Balloon Base (Ontario, Canada) by the balloon division of the French Space Agency CNES. After reaching a floating altitude of 38 km, EUSO-Balloon imaged the UV light in the wavelength range ∼290-500 nm for more than 5 hours using the key technologies of JEM-EUSO. The flight allowed a good understanding of the performance of the detector to be developed, giving insights into possible improvements to be applied to future missions. A detailed measurement of the photoelectron counts in different atmospheric and ground conditions was achieved. By means of the simulation of the instrument response and by assuming atmospheric models, the absolute intensity of diffuse light was estimated. The instrument detected hundreds of laser tracks with similar characteristics to EASs shot by a helicopter flying underneath. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. The reconstruction of the direction of the laser tracks was performed. In this work, a review of the main results obtained by EUSO-Balloon is presented as well as implications for future space-based observations of UHECRs.

3.
Nature ; 567(7747): 187-193, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30814737

RESUMO

Dysregulation of lipid homeostasis is a precipitating event in the pathogenesis and progression of hepatosteatosis and metabolic syndrome. These conditions are highly prevalent in developed societies and currently have limited options for diagnostic and therapeutic intervention. Here, using a proteomic and lipidomic-wide systems genetic approach, we interrogated lipid regulatory networks in 107 genetically distinct mouse strains to reveal key insights into the control and network structure of mammalian lipid metabolism. These include the identification of plasma lipid signatures that predict pathological lipid abundance in the liver of mice and humans, defining subcellular localization and functionality of lipid-related proteins, and revealing functional protein and genetic variants that are predicted to modulate lipid abundance. Trans-omic analyses using these datasets facilitated the identification and validation of PSMD9 as a previously unknown lipid regulatory protein. Collectively, our study serves as a rich resource for probing mammalian lipid metabolism and provides opportunities for the discovery of therapeutic agents and biomarkers in the setting of hepatic lipotoxicity.


Assuntos
Metabolismo dos Lipídeos/genética , Lipídeos/análise , Lipídeos/genética , Proteômica , Animais , Células HEK293 , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/sangue , Lipídeos/classificação , Fígado/química , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Obesidade/genética , Obesidade/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
4.
J Mol Endocrinol ; 58(4): R225-R240, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28373293

RESUMO

Diabetic cardiomyopathy was first defined over four decades ago. It was observed in small post-mortem studies of diabetic patients who suffered from concomitant heart failure despite the absence of hypertension, coronary disease or other likely causal factors, as well as in large population studies such as the Framingham Heart Study. Subsequent studies continue to demonstrate an increased incidence of heart failure in the setting of diabetes independent of established risk factors, suggesting direct effects of diabetes on the myocardium. Impairments in glucose metabolism and handling receive the majority of the blame. The role of concomitant impairments in lipid handling, particularly at the level of the myocardium, has however received much less attention. Cardiac lipid accumulation commonly occurs in the setting of type 2 diabetes and has been suggested to play a direct causal role in the development of cardiomyopathy and heart failure in a process termed as cardiac lipotoxicity. Excess lipids promote numerous pathological processes linked to the development of cardiomyopathy, including mitochondrial dysfunction and inflammation. Although somewhat underappreciated, cardiac lipotoxicity also occurs in the setting of type 1 diabetes. This phenomenon is, however, largely understudied in comparison to hyperglycaemia, which has been widely studied in this context. The current review addresses the changes in lipid metabolism occurring in the type 1 diabetic heart and how they are implicated in disease progression. Furthermore, the pathological pathways linked to cardiac lipotoxicity are discussed. Finally, we consider novel approaches for modulating lipid metabolism as a cardioprotective mechanism against cardiomyopathy and heart failure.


Assuntos
Diabetes Mellitus Tipo 1/genética , Cardiomiopatias Diabéticas/genética , Ácidos Graxos/metabolismo , Insuficiência Cardíaca/genética , Metabolismo dos Lipídeos/genética , Miocárdio/metabolismo , Animais , Calmodulina/genética , Calmodulina/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Cardiomiopatias Diabéticas/complicações , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/terapia , Modelos Animais de Doenças , Terapia Genética/métodos , Glucose/metabolismo , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/terapia , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Miocárdio/patologia
5.
Methods Mol Biol ; 1583: 65-72, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28205167

RESUMO

There are many advantages to the use of mice as a model to study the regulation of cholesterol metabolism. Common models of hypercholesterolemia include low-density lipoprotein receptor deficient (LDLR -/-) mice and apolipoprotein E deficient (ApoE) -/- mice. Herein, we describe the recently generated mouse model, L-sIDOL Tg mice, which express a dominant active form of Inducible Degrader Of the Low-density lipoprotein receptor (IDOL) in a liver-specific manner. This murine model offers significant advantages over previously established models for the study of hypercholesterolemia and atherosclerosis.


Assuntos
Aterosclerose , Hipercolesterolemia , Fígado , Ubiquitina-Proteína Ligases , Animais , Apolipoproteínas E/deficiência , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Modelos Animais de Doenças , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Especificidade de Órgãos/genética , Receptores de LDL/deficiência , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética
6.
Biosci Rep ; 34(2)2014 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27919032

RESUMO

Cholesterol synthesis occurs in the ER (endoplasmic reticulum), where most of the cholesterogenic machinery resides. As membrane-bound proteins, their topology is difficult to determine, and thus their structures are largely unknown. To help resolve this, we focused on the final enzyme in cholesterol synthesis, DHCR24 (3ß-hydroxysterol Δ24-reductase). Prediction programmes and previous studies have shown conflicting results regarding which regions of DHCR24 are associated with the membrane, although there was general agreement that this was limited to only the N-terminal portion. Here, we present biochemical evidence that in fact the majority of the enzyme is associated with the ER membrane. This has important consequences for the many functions attributed to DHCR24. In particular, those that suggest DHCR24 alters its localization within the cell should be reassessed in light of this new information. Moreover, we propose that the expanding database of post-translational modifications will be a valuable resource for mapping the topology of membrane-associated proteins, such as DHCR24, that is, flagging cytosolic residues accessible to modifying enzymes such as kinases and ubiquitin ligases.


Assuntos
Retículo Endoplasmático/metabolismo , Membranas Intracelulares/enzimologia , Proteínas do Tecido Nervoso/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Retículo Endoplasmático/genética , Humanos , Proteínas do Tecido Nervoso/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Domínios Proteicos
7.
J Lipid Res ; 55(3): 410-20, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24363437

RESUMO

The role of signaling in regulating cholesterol homeostasis is gradually becoming more widely recognized. Here, we explored how kinases and phosphorylation sites regulate the activity of the enzyme involved in the final step of cholesterol synthesis, 3ß-hydroxysterol Δ24-reductase (DHCR24). Many factors are known to regulate DHCR24 transcriptionally, but little is known about its posttranslational regulation. We developed a system to specifically test human ectopic DHCR24 activity in a model cell-line (Chinese hamster ovary-7) using siRNA targeted only to hamster DHCR24, thus ensuring that all activity could be attributed to the human enzyme. We determined the effect of known phosphorylation sites and found that mutating certain residues (T110, Y299, and Y507) inhibited DHCR24 activity. In addition, inhibitors of protein kinase C ablated DHCR24 activity, although not through a known phosphorylation site. Our data indicate a novel mechanism whereby DHCR24 activity is regulated by signaling.


Assuntos
Colesterol/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Transdução de Sinais , Animais , Sítios de Ligação/genética , Western Blotting , Células CHO , Cricetinae , Cricetulus , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Desmosterol/metabolismo , Expressão Gênica , Humanos , Indóis/farmacologia , Isoquinolinas/farmacologia , Mutação , Proteínas do Tecido Nervoso/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Fosforilação/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfonamidas/farmacologia , Tirosina/genética , Tirosina/metabolismo
8.
Prog Lipid Res ; 52(4): 666-80, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24095826

RESUMO

3ß-Hydroxysterol Δ(24)-reductase (DHCR24) catalyzes the conversion of desmosterol to cholesterol. This ultimate step of cholesterol biosynthesis appears to be remarkable in its diverse functions and the number of diseases it is implicated in from vascular disease to Hepatitis C virus (HCV) infection to cancer to Alzheimer's disease. This review summarizes the present knowledge on the DHCR24 gene, sterol Δ(24)-reductase protein and the regulation of both. In addition, the functions of desmosterol, DHCR24 and their roles in human diseases are discussed. It is apparent that DHCR24 exerts more complex effects than what would be expected based on the enzymatic activity of sterol Δ(24)-reduction alone, such as its influence in modulating oxidative stress. Increasing information about DHCR24 membrane association, processing, enzymatic regulation and interaction partners will provide further fundamental insights into DHCR24 and its many and varied biological roles.


Assuntos
Colesterol/biossíntese , Desmosterol/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Membrana Celular/metabolismo , Epigenômica , Humanos , Erros Inatos do Metabolismo Lipídico/metabolismo , Erros Inatos do Metabolismo Lipídico/patologia , Masculino , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Estresse Oxidativo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética
9.
Biochim Biophys Acta ; 1821(10): 1350-60, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22809995

RESUMO

3ß-Hydroxysterol Δ24-reductase (DHCR24) catalyzes a final step in cholesterol synthesis, and has been ascribed diverse functions, such as being anti-apoptotic and anti-inflammatory. How this enzyme is regulated transcriptionally by sterols is currently unclear. Some studies have suggested that its expression is regulated by Sterol Regulatory Element Binding Proteins (SREBPs) while another suggests it is through the Liver X Receptor (LXR). However, these transcription factors have opposing effects on cellular sterol levels, so it is likely that one predominates. Here we establish that sterol regulation of DHCR24 occurs predominantly through SREBP-2, and identify the particular region of the DHCR24 promoter to which SREBP-2 binds. We demonstrate that sterol regulation is mediated by two sterol regulatory elements (SREs) in the promoter of the gene, assisted by two nearby NF-Y binding sites. Moreover, we present evidence that the dual SREs work cooperatively to regulate DHCR24 expression by comparison to two known SREBP target genes, the LDL receptor with one SRE, and farnesyl-diphosphate farnesyltransferase 1, with two SREs.


Assuntos
Lipídeos/biossíntese , Proteínas do Tecido Nervoso/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/fisiologia , Esteróis/farmacologia , Animais , Sequência de Bases , Sítios de Ligação , Fator de Ligação a CCAAT/metabolismo , Células CHO , Cricetinae , Cricetulus , Farnesil-Difosfato Farnesiltransferase/fisiologia , Regulação Enzimológica da Expressão Gênica , Receptores X do Fígado , Dados de Sequência Molecular , Receptores Nucleares Órfãos/fisiologia , Regiões Promotoras Genéticas , Receptores de LDL/genética
10.
Biochim Biophys Acta ; 1821(9): 1269-77, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22178193

RESUMO

The oxysterol 24(S),25-epoxycholesterol (24,25EC) can affect cholesterol metabolism at multiple points. Previously, we proposed that 24,25EC has an especially significant role in fine-tuning cholesterol synthesis, since it parallels cholesterol production, and without it, acute cholesterol synthesis is exaggerated. 24,25EC is structurally similar to desmosterol, a substrate for the enzyme 3ß-hydroxysterol ∆(24)-reductase (DHCR24, also called Seladin-1) which catalyzes a final step in cholesterol synthesis. In this study, we reveal a novel mode by which 24,25EC can regulate cholesterol synthesis, by interfering with DHCR24, resulting in the rapid accumulation of the substrate desmosterol, at the expense of cholesterol. This effect was independent of DHCR24 protein levels, and was observed in multiple mammalian cell-lines, including those of hepatic and neuronal origin. Conversely, overexpression of DHCR24 blunted the inhibition by 24,25EC. We also determined that the specificity of this effect was restricted to certain side-chain oxysterols, notably those oxygenated at C-25. Importantly, endogenous levels of 24,25EC, manipulated by genetic and pharmacological methods, were sufficient to reduce DHCR24 activity. Together, our work introduces a novel role for 24,25EC in cholesterol homeostasis, through its rapid inhibition of cholesterol synthesis at DHCR24. Also, our work provides new insights into a little studied area, the post-transcriptional regulation of DHCR24, an important enzyme in human health and disease.


Assuntos
Colesterol/análogos & derivados , Colesterol/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/biossíntese , Animais , Células CHO , Colesterol/genética , Colesterol/metabolismo , Cricetinae , Cricetulus , Desmosterol/metabolismo , Células Hep G2 , Humanos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...