Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18871, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143144

RESUMO

This research developed a novel composite of MOF-NH2 and graphene oxide (GO) for enhanced CO2 capture. Employing the response surface methodology-central composite design (RSM-CCD) for experiments design, various MOF-NH2/GO samples with GO loadings from 0 to 30 wt% were synthesized. The results of SEM, XRD, EDS, and BET analysis revealed that the materials maintained their MOF crystal structure, confirmed by X-ray diffraction, and exhibited unique texture, high porosity, and oxygen-enriched surface chemistry. The influence of temperature (25-65 °C) and pressure (1-9 bar) on CO2 adsorption capacity was assessed using a volumetric adsorption system. Optimum conditions were obtained at weight percent of 22.6 wt% GO, temperature of 25 °C, and pressure of 9 bar with maximum adsorption capacity of 303.61 mg/g. The incorporation of amino groups enhanced the CO2 adsorption capacity. Isotherm and kinetic analyses indicated that Freundlich and Fractional-order models best described CO2 adsorption behavior. Thermodynamic analysis showed the process was exothermic, spontaneous, and physical, with enthalpy changes of - 16.905 kJ/mol, entropy changes of - 0.030 kJ/mol K, and Gibs changes energy of - 7.904 kJ/mol. Mass transfer diffusion coefficients increased with higher GO loadings. Regenerability tests demonstrated high performance and resilience, with only a 5.79% decrease in efficiency after fifteen cycles. These findings suggest significant potential for these composites in CO2 capture technologies.

2.
Sci Rep ; 13(1): 17700, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848469

RESUMO

Modified mesoporous NH2-Zr-BTC mixed ligand MOF nanocomposites were synthesized via the hydrothermal method as a novel adsorbent for CO2 capture. The newly modified MOF-808 with NH2 demonstrated a similar mesoporous morphology as MOF-808, whereas the specific surface area, pore volume, and average particle size, respectively, increased by 15%, 6%, and 46% compared to those of MOF-808. The characterization analyses exhibited the formation of more active groups on the adsorbent surface after modification. In addition, a laboratory adsorption setup was used to evaluate the effect of temperature, pressure, and NH2 content on the CO2 adsorption capacity in the range of 25-65 °C, 1-9 bar, and 0-20 wt%, respectively. An increase in pressure and a decrease in temperature enhanced the adsorption capacity. The highest equilibrium adsorption capacity of 369.11 mg/g was achieved at 25 °C, 9 bar, and 20 wt% NH2. By adding 20 wt% NH2, the maximum adsorption capacity calculated by the Langmuir model increased by about 4% compared to that of pure MOF-808. Moreover, Ritchie second-order and Sips models were the best-fitted models to predict the kinetics and isotherm data of CO2 adsorption capacity with the high correlation coefficient (R2 > 0.99) and AARE% of less than 0.1. The ΔH°, ΔS°, and ΔG° values were - 17.360 kJ/mol, - 0.028 kJ/mol K, and - 8.975 kJ/mol, respectively, demonstrating a spontaneous, exothermic, and physical adsorption process. Furthermore, the capacity of MH-20% sample decreased from 279.05 to 257.56 mg/g after 15 cycles, verifying excellent stability of the prepared mix-ligand MOF sorbent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA