Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 277: 126365, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38964047

RESUMO

Quantification of trace amounts of iron is of great importance in various fields. In the industrial sector, it is crucial to monitor the release of iron out of corrosion, pickling treatment, and steel manufacturing to address potential environmental and economic challenges. In biological systems, despite its indispensability, it is essential to maintain iron concentration below a specific threshold. Electrochemical (EC) methods provide significant analytical capabilities due to their simplicity, ease of use, and cost-effectiveness. This review focuses on the fundamental principles of EC methods for iron detection, including potentiometry, amperometry, coulometry, voltammetry, and electrochemical impedance spectroscopy (EIS). It further explains the process of obtaining calibration curves, and subsequently, determining the concentration of unknown ions. Additionally, technical notes are presented on selecting the initial signal value, reducing the duration of tests, excluding non-faradaic signals, and extending the linear region with the lowest detection limit. These notes are supported by key findings from relevant case studies.

2.
Environ Technol ; : 1-15, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38549515

RESUMO

Recently, there has been a growing concern regarding the increased contamination of water by bacteria. As a result, more attention has been paid to the potential benefits of utilizing nano adsorbents and photocatalysis for water purification. In order to better manipulate the physicochemical properties, it is crucial to gain a comprehensive understanding of the molecular behaviour between nanoparticles and pathogens. This article investigates the various interactions that can occur between Fe3O4-SiO2-TiO2 (FST) nanoparticles and bacterial cells. Moreover, it explores the impact of the SiO2 mid-layer and the governing interaction in the adhesion and degradation processes. In this regard, FST nanoparticles were prepared, and their adhesion behaviour to E. coli bacterial cells was evaluated using extended DLVO (Derjaguin-Landau-Verwey-Overbeek) theory. The following results revealed that the presence of silica transformed FST into a more hydrophobic material with a positively charged surface, thereby enhancing its affinity for bacterial adsorption. Additionally, SiO2 prevented electron/hole recombination. Amongst the various interactions, Lewis acid-base interactions had the greatest influence on the total energy and lacking energy barriers led to irreversible adhesion. Moreover, the presence of an increased number of ·OH groups on the surface resulted in enhanced bactericidal properties of FST, leading to severe damage of E. coli cells through the formation of a greater number of hydrogen bonds on the bacterial surface, which is the basis of the proposed mechanism for destruction of the bacterial structure.

3.
J Biomed Mater Res A ; 109(2): 181-192, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32452141

RESUMO

In the present study, a Fe3 O4 -TiO2 (FT) core-shell and a core-multishell structure of Fe3 O4 -SiO2 -TiO2 (FST) were synthesized, and their bactericidal capability was investigated on Escherichia coli (E. coli). Scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV-vis), X-ray diffraction, Brunauer-Emmett-Teller, zeta potential, and fluorimetry were carried out to characterize properties of synthesized nanoparticles. An efficiency of 98% adsorption and harsh bacterial damage was observed when E. coli was put in contact with FST. Weaker adsorption of bacteria in contact with FT demonstrated that heterojunction has destructive effects on nanostructure. Further investigation proved that more OH were produced on the surface of FST, which is a sign of its longer lifetime. Moreover, results revealed that the presence of SiO2 in the structure caused enhanced coverage, surface area, and porosity in TiO2 outer layer, all of which have positive effects on adsorption. However, UV-vis showed smaller band gap for FT. It suggests that although photoactivity of FST is less influenced by light absorption, it possesses more e/h lifetime for generation of reactive oxygen species. Results point to the importance of SiO2 as an obstacle of heterojunction on both adsorption and photoactivity. It was also proposed that increasing band gap in FST can be attributed to the porosity of SiO2 that causes suppression of TiO2 nanocrystallite growth.


Assuntos
Materiais Biocompatíveis/química , Escherichia coli/efeitos dos fármacos , Compostos Férricos/química , Compostos Férricos/farmacologia , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Titânio/química , Titânio/farmacologia , Adsorção , Antibacterianos/química , Catálise , Cinética , Testes de Sensibilidade Microbiana , Nanopartículas , Nanoestruturas , Processos Fotoquímicos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...