Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13221, 2024 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851807

RESUMO

In exploring nature's potential in addressing diabetes-related conditions, this study investigates the therapeutic capabilities of 3-formyl chromone derivatives. Utilizing in silico methodologies, we focus on 6-substituted 3-formyl chromone derivatives (1-16) to assess their therapeutic potential in treating diabetes. The research examined the formyl group at the chromone's C-3 position. ADMET, biological activities, were conducted along with B3LYP calculations using 3 different basis sets. The analogues were analyzed based on their parent structure obtained from PubChem. The HOMO-LUMO gap confirmed the bioactive nature of the derivatives, NBO analysis was performed to understand the charge transfer. PASS prediction revealed that 3-formyl chromone derivatives are potent aldehyde oxidase inhibitors, insulin inhibitors, HIF1A expression inhibitors, and histidine kinase. Molecular docking studies indicated that the compounds had a strong binding affinity with proteins, including CAD, BHK, IDE, HIF-α, p53, COX, and Mpro of SARS-CoV2. 6-isopropyl-3-formyl chromone (4) displayed the highest affinity for IDE, with a binding energy of - 8.5 kcal mol-1. This result outperformed the affinity of the reference standard dapagliflozin (- 7.9 kcal mol-1) as well as two other compounds that target human IDE, namely vitexin (- 8.3 kcal mol-1) and myricetin (- 8.4 kcal mol-1). MD simulations were revealed RMSD value between 0.2 and 0.5 nm, indicating the strength of the protein-ligand complex at the active site.


Assuntos
Cromonas , Hipoglicemiantes , Simulação de Acoplamento Molecular , Cromonas/química , Cromonas/farmacologia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Simulação por Computador
2.
Biomed Pharmacother ; 174: 116438, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513594

RESUMO

The mitogen-activated protein kinase (MAPK) signaling pathway, particularly the p38 MAPK and ERK1/2, has been implicated in the pathogenesis of Parkinson's disease (PD). Recent studies have shown that MAPK signaling pathway can influence the expression of matrix metalloproteinase 9 (MMP-9), known for its involvement in various physiological and pathological processes, including neurodegenerative diseases. This study explores the modulation of MMP-9 expression via the MAPK/ERK signaling cascade and its potential therapeutic implications in the context of PD-associated motor dysfunction. Here, tolperisone hydrochloride (TL), a muscle relaxant that blocks voltage-gated sodium and calcium channels, was used as a treatment to observe its effect on MAPK signaling and MMP-9 expression. Rotenone (RT) exposure in mice resulted in a significant reduction in substantia nigra and primary motor cortex neurons, which were further evidenced by impairments in motor function. When TL was administered, neuron count was restored (89.0 ± 4.78 vs 117.0 ± 4.46/mm2), and most of the motor dysfunction was alleviated. Mechanistically, TL reduced the protein expression of phospho-p38MAPK (1.06 fold vs 1.00 fold) and phospho-ERK1/2 (1.16 fold vs 1.02 fold), leading to the inhibition of MAPK signaling, as well as reduced MMP-9 concentrations (2.76 ± 0.10 vs 1.94 ± 0.10 ng/mL) in the process of rescuing RT-induced neuronal cell death and motor dysfunction. Computational analysis further revealed TL's potential inhibitory properties against MMP-9 along with N and L-type calcium channels. These findings shed light on TL's neuroprotective effects via MMP-9 inhibition and MAPK signaling downregulation, offering potential therapeutic avenues for PD-associated motor dysfunction.


Assuntos
Inibidores de Metaloproteinases de Matriz , Doença de Parkinson , Tolperisona , Animais , Masculino , Camundongos , Regulação para Baixo/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Rotenona/farmacologia , Tolperisona/farmacocinética , Tolperisona/uso terapêutico
3.
MethodsX ; 12: 102537, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38299040

RESUMO

In exploring nature's potential in addressing liver-related conditions, this study investigates the therapeutic capabilities of flavonoids. Utilizing in silico methodologies, we focus on flavone and its analogs (1-14) to assess their therapeutic potential in treating liver diseases. Molecular change calculations using density functional theory (DFT) were conducted on these compounds, accompanied by an evaluation of each analog's physiochemical and biochemical properties. The study further assesses these flavonoids' binding effectiveness and locations through molecular docking studies against six target proteins associated with human cancer. Tropoflavin and taxifolin served as reference drugs. The structurally modified flavone analogs (1-14) displayed a broad range of binding affinities, ranging from -7.0 to -9.4 kcal mol⁻¹, surpassing the reference drugs. Notably, flavonoid (7) exhibited significantly higher binding affinities with proteins Nrf2 (PDB:1 × 2 J) and DCK (PDB:1 × 2 J) (-9.4 and -8.1 kcal mol⁻¹) compared to tropoflavin (-9.3 and -8.0 kcal mol⁻¹) and taxifolin (-9.4 and -7.1 kcal mol⁻¹), respectively. Molecular dynamics (MD) simulations revealed that the docked complexes had a root mean square deviation (RMSD) value ranging from 0.05 to 0.2 nm and a root mean square fluctuation (RMSF) value between 0.35 and 1.3 nm during perturbation. The study concludes that 5,7-dihydroxyflavone (7) shows substantial promise as a potential therapeutic agent for liver-related conditions. However, further validation through in vitro and in vivo studies is necessary. Key insights from this study include:•Screening of flavanols and their derivatives to determine pharmacological and bioactive properties using ADMET, molinspiration, and pass prediction analysis.•Docking of shortlisted flavone derivatives with proteins having essential functions.•Analysis of the best protein-flavonoid docked complexes using molecular dynamics simulation to determine the flavonoid's efficiency and stability within a system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...