Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 10(7): 861-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17558405

RESUMO

Myelination in the peripheral nervous system requires close contact between Schwann cells and the axon, but the underlying molecular basis remains largely unknown. Here we show that cell adhesion molecules (CAMs) of the nectin-like (Necl, also known as SynCAM or Cadm) family mediate Schwann cell-axon interaction during myelination. Necl4 is the main Necl expressed by myelinating Schwann cells and is located along the internodes in direct apposition to Necl1, which is localized on axons. Necl4 serves as the glial binding partner for axonal Necl1, and the interaction between these two CAMs mediates Schwann cell adhesion. The disruption of the interaction between Necl1 and Necl4 by their soluble extracellular domains, or the expression of a dominant-negative Necl4 in Schwann cells, inhibits myelination. These results suggest that Necl proteins are important for mediating axon-glia contact during myelination in peripheral nerves.


Assuntos
Axônios/fisiologia , Moléculas de Adesão Celular Neuronais/fisiologia , Bainha de Mielina/fisiologia , Células de Schwann/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Células COS , Moléculas de Adesão Celular , Chlorocebus aethiops , Imunofluorescência , Imunoglobulinas , Masculino , Microscopia Eletrônica , Sistema Nervoso Periférico/fisiologia , RNA/biossíntese , RNA/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/fisiologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
J Cell Biol ; 177(3): 551-62, 2007 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-17485493

RESUMO

The interaction between gliomedin and the axonodal cell adhesion molecules (CAMs) neurofascin and NrCAM induces the clustering of Na(+) channels at the nodes of Ranvier. We define new interactions of gliomedin that are essential for its clustering activity. We show that gliomedin exists as both transmembrane and secreted forms that are generated by proteolytic cleavage of the protein, and that only the latter is detected at the nodes of Ranvier. The secreted extracellular domain of gliomedin binds to Schwann cells and is incorporated into the extracellular matrix (ECM) in a heparin-dependent manner, suggesting the involvement of heparan sulfate proteoglycans (HSPGs). Furthermore, we show that the N-terminal region of gliomedin serves as an oligomerization domain that mediates self-association of the molecule, which is required for its binding to neurofascin and NrCAM. Our results indicate that the deposition of gliomedin multimers at the nodal gap by binding to HSPGs facilitates the clustering of the axonodal CAMs and Na(+) channels.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Matriz Extracelular/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Fatores de Crescimento Neural/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Nós Neurofibrosos/metabolismo , Animais , Células Cultivadas , Heparina/metabolismo , Estrutura Quaternária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Ratos , Canais de Sódio/metabolismo
3.
Neuron Glia Biol ; 2(1): 27-38, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16721426

RESUMO

The development and maintenance of myelinated nerves in the PNS requires constant and reciprocal communication between Schwann cells and their associated axons. However, little is known about the nature of the cell-surface molecules that mediate axon-glial interactions at the onset of myelination and during maintenance of the myelin sheath in the adult. Based on the rationale that such molecules contain a signal sequence in order to be presented on the cell surface, we have employed a eukaryotic-based, signal-sequence-trap approach to identify novel secreted and membrane-bound molecules that are expressed in myelinating and non-myelinating Schwann cells. Using cDNA libraries derived from dbcAMP-stimulated primary Schwann cells and 3-day-old rat sciatic nerve mRNAs, we generated an extensive list of novel molecules expressed in myelinating nerves in the PNS. Many of the identified proteins are cell-adhesion molecules (CAMs) and extracellular matrix (ECM) components, most of which have not been described previously in Schwann cells. In addition, we have identified several signaling receptors, growth and differentiation factors, ecto-enzymes and proteins that are associated with the endoplasmic reticulum and the Golgi network. We further examined the expression of several of the novel molecules in Schwann cells in culture and in rat sciatic nerve by primer-specific, real-time PCR and in situ hybridization. Our results indicate that myelinating Schwann cells express a battery of novel CAMs that might mediate their interactions with the underlying axons.

4.
Neuron ; 47(2): 215-29, 2005 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16039564

RESUMO

Accumulation of Na(+) channels at the nodes of Ranvier is a prerequisite for saltatory conduction. In peripheral nerves, clustering of these channels along the axolemma is regulated by myelinating Schwann cells through a yet unknown mechanism. We report the identification of gliomedin, a glial ligand for neurofascin and NrCAM, two axonal immunoglobulin cell adhesion molecules that are associated with Na+ channels at the nodes of Ranvier. Gliomedin is expressed by myelinating Schwann cells and accumulates at the edges of each myelin segment during development, where it aligns with the forming nodes. Eliminating the expression of gliomedin by RNAi, or the addition of a soluble extracellular domain of neurofascin to myelinating cultures, which caused the redistribution of gliomedin along the internodes, abolished node formation. Furthermore, a soluble gliomedin induced nodal-like clusters of Na+ channels in the absence of Schwann cells. We propose that gliomedin provides a glial cue for the formation of peripheral nodes of Ranvier.


Assuntos
Axônios/metabolismo , Moléculas de Adesão Celular/metabolismo , Substâncias Macromoleculares/metabolismo , Nós Neurofibrosos/metabolismo , Células de Schwann/metabolismo , Fatores Etários , Sequência de Aminoácidos , Animais , Anquirinas/metabolismo , Northern Blotting/métodos , Western Blotting/métodos , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular Neuronais/metabolismo , Compartimento Celular , Células Cultivadas , Chlorocebus aethiops , Claudinas , Clonagem Molecular/métodos , Proteínas do Citoesqueleto , Imunofluorescência/métodos , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Substâncias Macromoleculares/imunologia , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microscopia Imunoeletrônica/métodos , Proteína Básica da Mielina/metabolismo , Glicoproteína Associada a Mielina/metabolismo , Proteínas de Neurofilamentos/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Nós Neurofibrosos/ultraestrutura , Ratos , Receptores de Peptídeos/metabolismo , Proteínas S100/metabolismo , Células de Schwann/ultraestrutura , Nervo Isquiático/crescimento & desenvolvimento , Nervo Isquiático/metabolismo , Canais de Sódio/metabolismo , Espectrina/metabolismo , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...