Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 14(5): e0144623, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37681975

RESUMO

IMPORTANCE: Polymicrobial intra-abdominal infections are serious clinical infections that can lead to life-threatening sepsis, which is difficult to treat in part due to the complex and dynamic inflammatory responses involved. Our prior studies demonstrated that immunization with low-virulence Candida species can provide strong protection against lethal polymicrobial sepsis challenge in mice. This long-lived protection was found to be mediated by trained Gr-1+ polymorphonuclear leukocytes with features resembling myeloid-derived suppressor cells (MDSCs). Here we definitively characterize these cells as MDSCs and demonstrate that their mechanism of protection involves the abrogation of lethal inflammation, in part through the action of the anti-inflammatory cytokine interleukin (IL)-10. These studies highlight the role of MDSCs and IL-10 in controlling acute lethal inflammation and give support for the utility of trained tolerogenic immune responses in the clinical treatment of sepsis.


Assuntos
Células Supressoras Mieloides , Sepse , Animais , Camundongos , Candida , Inflamação , Neutrófilos , Sepse/prevenção & controle
2.
Front Physiol ; 14: 1150272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969606

RESUMO

Introduction: Microbial pathogens undergo significant physiological changes during interactions with the infected host, including alterations in metabolism and cell architecture. The Cryptococcus neoformans Mar1 protein is required for the proper ordering of the fungal cell wall in response to host-relevant stresses. However, the precise mechanism by which this Cryptococcus-specific protein regulates cell wall homeostasis was not defined. Methods: Here, we use comparative transcriptomics, protein localization, and phenotypic analysis of a mar1D loss-of-function mutant strain to further define the role of C. neoformans Mar1 in stress response and antifungal resistance. Results: We demonstrate that C. neoformans Mar1 is highly enriched in mitochondria. Furthermore, a mar1Δ mutant strain is impaired in growth in the presence of select electron transport chain inhibitors, has altered ATP homeostasis, and promotes proper mitochondrial morphogenesis. Pharmacological inhibition of complex IV of the electron transport chain in wild-type cells promotes similar cell wall changes as the mar1Δ mutant strain, supporting prior associations between mitochondrial function and cell wall homeostasis. Although Mar1 is not required for general susceptibility to the azole antifungals, the mar1Δ mutant strain displays increased tolerance to fluconazole that correlates with repressed mitochondrial metabolic activity. Discussion: Together, these studies support an emerging model in which the metabolic activity of microbial cells directs cell physiological changes to allow persistence in the face of antimicrobial and host stress.

3.
Front Cell Infect Microbiol ; 12: 898030, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770067

RESUMO

Fungal-bacterial intra-abdominal infections (IAI) can lead to sepsis with significant morbidity and mortality. We have established a murine model of Candida albicans (Ca) and Staphylococcus aureus (Sa) IAI that results in acute lethal sepsis. Prior intraperitoneal or intravenous inoculation with low virulence Candida dubliniensis (Cd) confers high level protection against lethal Ca/Sa IAI and sepsis. Protection via Cd immunization is associated with decreased pro-inflammatory cytokines and mediated by Gr-1+ putative myeloid-derived suppressor cells (MDSCs) representing a novel form of trained innate immunity (TII). The objective of these studies was to determine the extent of Cd-mediated TII against sepsis of broad origin and explore the potential of fungal cell wall components as abiotic immunogen alternatives to induce TII, including zymosan depleted of TLR2 activity (d-zymosan), or purified preparations of ß-glucan. Immunized mice were challenged 14 days post-immunization with a lethal array of live or abiotic inducers of sepsis, including Ca/Sa, Ca/Escherichia coli (Ca/Ec), LPS or untreated zymosan. Results showed that live Cd immunization was protective against sepsis induced by Ca/Ec and zymosan, but not LPS. Similar to protection against Ca/Sa, survival was dependent on Gr-1+ cells with no role for macrophages. Among the fungal cell wall compounds as immunogens, immunization with d-zymosan and an alkali-treated form of ß-glucan also resulted in significant protection against sepsis induced by Ca/Sa or Ca/Ec, but not LPS sepsis. Again, there was a strong dependence on Gr-1+ cells for protection with one exception, an added role for macrophages in the case of protection induced by alkali-treated ß-glucan. Overall, these results demonstrate that immunization with Cd as well as abiotic fungal cell components are capable of Gr-1+ cell-mediated trained innate immune protection against sepsis of broad microbial origin. In addition, abiotic ß-glucans represent potential alternatives to live Cd for protection against lethal polymicrobial sepsis.


Assuntos
Sepse , Infecções Estafilocócicas , beta-Glucanas , Álcalis , Animais , Cádmio , Candida , Candida albicans , Imunidade Inata , Camundongos , Sepse/prevenção & controle , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Zimosan
4.
Infect Immun ; 90(6): e0058021, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35587201

RESUMO

Many successful pathogens cause latent infections, remaining dormant within the host for years but retaining the ability to reactivate to cause symptomatic disease. The human opportunistic fungal pathogen Cryptococcus neoformans establishes latent pulmonary infections in immunocompetent individuals upon inhalation from the environment. These latent infections are frequently characterized by granulomas, or foci of chronic inflammation, that contain dormant and persistent cryptococcal cells. Immunosuppression can cause these granulomas to break down and release fungal cells that proliferate, disseminate, and eventually cause lethal cryptococcosis. This course of fungal latency and reactivation is understudied due to limited models, as chronic pulmonary granulomas do not typically form in mouse cryptococcal infections. A loss-of-function mutation in the Cryptococcus-specific MAR1 gene was previously described to alter cell surface remodeling in response to host signals. Here, we demonstrate that the mar1Δ mutant strain persists long term in a murine inhalation model of cryptococcosis, inducing a chronic pulmonary granulomatous response. We find that murine infections with the mar1Δ mutant strain are characterized by reduced fungal burden, likely due to the low growth rate of the mar1Δ mutant strain at physiological temperature, and an altered host immune response, likely due to inability of the mar1Δ mutant strain to properly employ virulence factors. We propose that this combination of features in the mar1Δ mutant strain collectively promotes the induction of a more chronic inflammatory response and enables long-term fungal persistence within these granulomatous regions.


Assuntos
Criptococose , Cryptococcus neoformans , Infecção Latente , Animais , Criptococose/microbiologia , Modelos Animais de Doenças , Inflamação , Pulmão , Camundongos
5.
mBio ; 12(5): e0254821, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34663098

RESUMO

We recently discovered a novel form of trained innate immunity (TII) induced by low-virulence Candida species (i.e., Candida dubliniensis) that protects against lethal fungal/bacterial infection. Mice vaccinated by intraperitoneal (i.p.) inoculation are protected against lethal sepsis following Candida albicans/Staphylococcus aureus (Ca/Sa) intra-abdominal infection (IAI) or Ca bloodstream infection (BSI). The protection against IAI is mediated by long-lived Gr-1+ leukocytes as putative myeloid-derived suppressor cells (MDSCs) and not by prototypical trained macrophages. This study aimed to determine if a similar TII mechanism (Gr-1+ cell-mediated suppression of sepsis) is protective against BSI and whether this TII can also be induced following intravenous (i.v.) vaccination. For this, mice were vaccinated with low-virulence Candida strains (i.p. or i.v.), followed by lethal challenge (Ca/Sa i.p. or Ca i.v.) 14 days later, and observed for sepsis (hypothermia, sepsis scoring, and serum cytokines), organ fungal burden, and mortality. Similar parameters were monitored following depletion of macrophages or Gr-1+ leukocytes during lethal challenge. The results showed that mice vaccinated i.p. or i.v. were protected against lethal Ca/Sa IAI or Ca BSI. In all cases, protection was mediated by Ly6G+ Gr-1+ putative granulocytic MDSCs (G-MDSCs), with no role for macrophages, and correlated with reduced sepsis parameters. Protection also correlated with reduced fungal burden in spleen and brain but not liver or kidney. These results suggest that Ly6G+ G-MDSC-mediated TII is induced by either the i.p. and i.v. route of inoculation and protects against IAI or BSI forms of systemic candidiasis, with survival correlating with amelioration of sepsis and reduced organ-specific fungal burden. IMPORTANCE Trained innate immunity (TII) is induced following immunization with live attenuated microbes and represents a clinically important strategy to enhance innate defenses. TII was initially demonstrated following intravenous inoculation with low-virulence Candida albicans, with protection against a subsequent lethal C. albicans intravenous bloodstream infection (BSI) mediated by monocytes with enhanced cytokine responses. We expanded this by describing a novel form of TII induced by intraperitoneal inoculation with low-virulence Candida that protects against lethal sepsis induced by polymicrobial intra-abdominal infection (IAI) via Gr-1+ leukocytes as putative myeloid-derived suppressor cells (MDSCs). In this study, we addressed these two scenarios and confirmed an exclusive role for Ly6G+ Gr-1+ leukocytes in mediating TII against either IAI or BSI via either route of inoculation, with protection associated with suppression of sepsis. These studies highlight the previously unrecognized importance of Ly6G+ MDSCs as central mediators of a novel form of TII termed trained tolerogenic immunity.


Assuntos
Antígenos Ly/imunologia , Candida/imunologia , Candidíase/imunologia , Candidíase/prevenção & controle , Imunidade Inata , Leucócitos/imunologia , Receptores de Quimiocinas/imunologia , Vacinação/métodos , Animais , Candida/patogenicidade , Modelos Animais de Doenças , Feminino , Camundongos , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/prevenção & controle , Virulência
6.
G3 (Bethesda) ; 11(11)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34518880

RESUMO

RNA sequencing (RNA-Seq) experiments focused on gene expression involve removal of ribosomal RNA (rRNA) because it is the major RNA constituent of cells. This process, called RNA enrichment, is done primarily to reduce cost: without rRNA removal, deeper sequencing must be performed to compensate for the sequencing reads wasted on rRNA. The ideal RNA enrichment method removes all rRNA without affecting other RNA in the sample. We tested the performance of three RNA enrichment methods on RNA isolated from Cryptococcus neoformans, a fungal pathogen of humans. We find that the RNase H depletion method is more efficient in depleting rRNA and more specific in recapitulating non-rRNA levels present in unenriched controls than the commonly-used Poly(A) isolation method. The RNase H depletion method is also more effective than the Ribo-Zero depletion method as measured by rRNA depletion efficiency and recapitulation of protein-coding RNA levels present in unenriched controls, while the Ribo-Zero depletion method more closely recapitulates annotated non-coding RNA (ncRNA) levels. Finally, we leverage these data to accurately map the C. neoformans mitochondrial rRNA genes, and also demonstrate that RNA-Seq data generated with the RNase H and Ribo-Zero depletion methods can be used to explore novel C. neoformans long non-coding RNA genes.


Assuntos
Cryptococcus neoformans , RNA Longo não Codificante , Cryptococcus neoformans/genética , Humanos , Poli A , RNA , RNA Ribossômico/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...