Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Sci Rep ; 14(1): 14279, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902479

RESUMO

Non-syndromic orofacial clefts (NSOFCs) are common birth defects with a complex etiology. While over 60 common risk loci have been identified, they explain only a small proportion of the heritability for NSOFCs. Rare variants have been implicated in the missing heritability. Thus, our study aimed to identify genes enriched with nonsynonymous rare coding variants associated with NSOFCs. Our sample included 814 non-syndromic cleft lip with or without palate (NSCL/P), 205 non-syndromic cleft palate only (NSCPO), and 2150 unrelated control children from Nigeria, Ghana, and Ethiopia. We conducted a gene-based analysis separately for each phenotype using three rare-variants collapsing models: (1) protein-altering (PA), (2) missense variants only (MO); and (3) loss of function variants only (LOFO). Subsequently, we utilized relevant transcriptomics data to evaluate associated gene expression and examined their mutation constraint using the gnomeAD database. In total, 13 genes showed suggestive associations (p = E-04). Among them, eight genes (ABCB1, ALKBH8, CENPF, CSAD, EXPH5, PDZD8, SLC16A9, and TTC28) were consistently expressed in relevant mouse and human craniofacial tissues during the formation of the face, and three genes (ABCB1, TTC28, and PDZD8) showed statistically significant mutation constraint. These findings underscore the role of rare variants in identifying candidate genes for NSOFCs.


Assuntos
Fenda Labial , Fissura Palatina , Humanos , Fissura Palatina/genética , Fenda Labial/genética , Feminino , Gana , Masculino , Camundongos , Predisposição Genética para Doença , Animais , Nigéria , Etiópia , População Negra/genética , Criança
2.
Genet Epidemiol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634654

RESUMO

Nonsyndromic orofacial clefts (NSOFCs) represent a large proportion (70%-80%) of all OFCs. They can be broadly categorized into nonsyndromic cleft lip with or without cleft palate (NSCL/P) and nonsyndromic cleft palate only (NSCPO). Although NSCL/P and NSCPO are considered etiologically distinct, recent evidence suggests the presence of shared genetic risks. Thus, we investigated the genetic overlap between NSCL/P and NSCPO using African genome-wide association study (GWAS) data on NSOFCs. These data consist of 814 NSCL/P, 205 NSCPO cases, and 2159 unrelated controls. We generated common single-nucleotide variants (SNVs) association summary statistics separately for each phenotype (NSCL/P and NSCPO) under an additive genetic model. Subsequently, we employed the pleiotropic analysis under the composite null (PLACO) method to test for genetic overlap. Our analysis identified two loci with genome-wide significance (rs181737795 [p = 2.58E-08] and rs2221169 [p = 4.5E-08]) and one locus with marginal significance (rs187523265 [p = 5.22E-08]). Using mouse transcriptomics data and information from genetic phenotype databases, we identified MDN1, MAP3k7, KMT2A, ARCN1, and VADC2 as top candidate genes for the associated SNVs. These findings enhance our understanding of genetic variants associated with NSOFCs and identify potential candidate genes for further exploration.

3.
Res Sq ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38464065

RESUMO

Non-syndromic orofacial clefts (NSOFCs) are common birth defects with a complex etiology. While over 60 common risk loci have been identified, they explain only a small proportion of the heritability for NSOFC. Rare variants have been implicated in the missing heritability. Thus, our study aimed to identify genes enriched with nonsynonymous rare coding variants associated with NSOFCs. Our sample included 814 non-syndromic cleft lip with or without palate (NSCL/P), 205 non-syndromic cleft palate only (NSCPO), and 2150 unrelated control children from Nigeria, Ghana, and Ethiopia. We conducted a gene-based analysis separately for each phenotype using three rare-variants collapsing models: (1) protein-altering (PA), (2) missense variants only (MO); and (3) loss of function variants only (LOFO). Subsequently, we utilized relevant transcriptomics data to evaluate associated gene expression and examined their mutation constraint using the gnomeAD database. In total, 13 genes showed suggestive associations (p = E-04). Among them, eight genes (ABCB1, ALKBH8, CENPF, CSAD, EXPH5, PDZD8, SLC16A9, and TTC28) were consistently expressed in relevant mouse and human craniofacial tissues during the formation of the face, and three genes (ABCB1, TTC28, and PDZD8) showed statistically significant mutation constraint. These findings underscore the role of rare variants in identifying candidate genes for NSOFCs.

4.
Mol Genet Genomic Med ; 11(10): e2237, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37496383

RESUMO

INTRODUCTION: The frequency and implications of secondary findings (SFs) from genomic testing data have been extensively researched. However, little is known about the frequency or reporting of SFs in Africans, who are underrepresented in large-scale population genomic studies. The availability of data from the first whole-genome sequencing for orofacial clefts in an African population motivated this investigation. METHODS: In total, 130 case-parent trios were analyzed for SFs within the ACMG SFv.3.0 list genes. Additionally, we filtered for four more genes (HBB, HSD32B, G6PD and ACADM). RESULTS: We identified 246 unique variants in 55 genes; five variants in four genes were classified as pathogenic or likely pathogenic (P/LP). The P/LP variants were seen in 2.3% (9/390) of the subjects, a frequency higher than ~1% reported for diverse ethnicities. On the ACMG list, pathogenic variants were observed in PRKAG (p. Glu183Lys). Variants in the PALB2 (p. Glu159Ter), RYR1 (p. Arg2163Leu) and LDLR (p. Asn564Ser) genes were predicted to be LP. CONCLUSION: This study provides information on the frequency and pathogenicity of SFs in an African cohort. Early risk detection will help reduce disease burden and contribute to efforts to increase knowledge of the distribution and impact of actionable genomic variants in diverse populations.


Assuntos
Fenda Labial , Fissura Palatina , Humanos , Predisposição Genética para Doença , Fenda Labial/genética , Fissura Palatina/genética , Genômica , África Subsaariana/epidemiologia
5.
Cleft Palate Craniofac J ; : 10556656221135926, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384317

RESUMO

Novel or rare damaging mutations have been implicated in the developmental pathogenesis of nonsyndromic cleft lip with or without cleft palate (nsCL ± P). Thus, we investigated the human genome for high-impact mutations that could explain the risk of nsCL ± P in our cohorts.We conducted next-generation sequencing (NGS) analysis of 130 nsCL ± P case-parent African trios to identify pathogenic variants that contribute to the risk of clefting. We replicated this analysis using whole-exome sequence data from a Brazilian nsCL ± P cohort. Computational analyses were then used to predict the mechanism by which these variants could result in increased risks for nsCL ± P.We discovered damaging mutations within the AFDN gene, a cell adhesion molecule (CAMs) that was previously shown to contribute to cleft palate in mice. These mutations include p.Met1164Ile, p.Thr453Asn, p.Pro1638Ala, p.Arg669Gln, p.Ala1717Val, and p.Arg1596His. We also discovered a novel splicing p.Leu1588Leu mutation in this protein. Computational analysis suggests that these amino acid changes affect the interactions with other cleft-associated genes including nectins (PVRL1, PVRL2, PVRL3, and PVRL4) CDH1, CTNNA1, and CTNND1.This is the first report on the contribution of AFDN to the risk for nsCL ± P in humans. AFDN encodes AFADIN, an important CAM that forms calcium-independent complexes with nectins 1 and 4 (encoded by the genes PVRL1 and PVRL4). This discovery shows the power of NGS analysis of multiethnic cleft samples in combination with a computational approach in the understanding of the pathogenesis of nsCL ± P.

6.
Sci Rep ; 12(1): 11743, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817949

RESUMO

The majority (85%) of nonsyndromic cleft lip with or without cleft palate (nsCL/P) cases occur sporadically, suggesting a role for de novo mutations (DNMs) in the etiology of nsCL/P. To identify high impact protein-altering DNMs that contribute to the risk of nsCL/P, we conducted whole-genome sequencing (WGS) analyses in 130 African case-parent trios (affected probands and unaffected parents). We identified 162 high confidence protein-altering DNMs some of which are based on available evidence, contribute to the risk of nsCL/P. These include novel protein-truncating DNMs in the ACTL6A, ARHGAP10, MINK1, TMEM5 and TTN genes; as well as missense variants in ACAN, DHRS3, DLX6, EPHB2, FKBP10, KMT2D, RECQL4, SEMA3C, SEMA4D, SHH, TP63, and TULP4. Many of these protein-altering DNMs were predicted to be pathogenic. Analysis using mouse transcriptomics data showed that some of these genes are expressed during the development of primary and secondary palate. Gene-set enrichment analysis of the protein-altering DNMs identified palatal development and neural crest migration among the few processes that were significantly enriched. These processes are directly involved in the etiopathogenesis of clefting. The analysis of the coding sequence in the WGS data provides more evidence of the opportunity for novel findings in the African genome.


Assuntos
Fenda Labial , Fissura Palatina , Animais , Encéfalo/anormalidades , Fenda Labial/genética , Fissura Palatina/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Camundongos , Mutação , Polimorfismo de Nucleotídeo Único
7.
Cleft Palate Craniofac J ; 59(7): 841-851, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34382870

RESUMO

OBJECTIVE: Nonsyndromic cleft lip and/or cleft palate (NSCL/P) have multifactorial etiology where genetic factors, gene-environment interactions, stochastic factors, gene-gene interactions, and parent-of-origin effects (POEs) play cardinal roles. POEs arise when the parental origin of alleles differentially impacts the phenotype of the offspring. The aim of this study was to identify POEs that can increase risk for NSCL/P in humans using a genome-wide dataset. METHODS: The samples (174 case-parent trios from Ghana, Ethiopia, and Nigeria) included in this study were from the African only genome wide association studies (GWAS) that was published in 2019. Genotyping of individual DNA using over 2 million multiethnic and African ancestry-specific single-nucleotide polymorphisms from the Illumina Multi-Ethnic Genotyping Array v2 15070954 A2 (genome build GRCh37/hg19) was done at the Center for Inherited Diseases Research. After quality control checks, PLINK was employed to carry out POE analysis employing the pooled subphenotypes of NSCL/P. RESULTS: We observed possible hints of POEs at a cluster of genes at a 1 mega base pair window at the major histocompatibility complex class 1 locus on chromosome 6, as well as at other loci encompassing candidate genes such as ASB18, ANKEF1, AGAP1, GABRD, HHAT, CCT7, DNMT3A, EPHA7, FOXO3, lncRNAs, microRNA, antisense RNAs, ZNRD1, ZFAT, and ZBTB16. CONCLUSION: Findings from our study suggest that some loci may increase the risk for NSCL/P through POEs. Additional studies are required to confirm these suggestive loci in NSCL/P etiology.


Assuntos
Fenda Labial , Fissura Palatina , África Subsaariana , Fenda Labial/genética , Fissura Palatina/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único
8.
Mol Genet Genomic Med ; 8(8): e1355, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32558391

RESUMO

BACKGROUND: The development of the face occurs during the early days of intrauterine life by the formation of facial processes from the first Pharyngeal arch. Derangement in these well-organized fusion events results in Orofacial clefts (OFC). Van der Woude syndrome (VWS) is one of the most common causes of syndromic cleft lip and/or palate accounting for 2% of all cases. Mutations in the IRF6 gene account for 70% of cases with the majority of these mutations located in the DNA-binding (exon 3, 4) or protein-binding domains (exon 7-9). The current study was designed to update the list of IRF6 variants reported for VWS by compiling all the published mutations from 2013 to date as well as including the previously unreported VWS cases from Africa and Puerto Rico. METHODS: We used PubMed with the search terms; "Van der Woude syndrome," "Popliteal pterygium syndrome," "IRF6," and "Orofacial cleft" to identify eligible studies. We compiled the CADD score for all the mutations to determine the percentage of deleterious variants. RESULTS: Twenty-one new mutations were identified from nine papers. The majority of these mutations were in exon 4. Mutations in exon 3 and 4 had CADD scores between 20 and 30 and mutations in exon 7-9 had CADD scores between 30 and 40. The presence of higher CADD scores in the protein-binding domain (exon 7-9) further confirms the crucial role played by this domain in the function of IRF6. In the new cases, we identified five IRF6 mutations, three novel missense mutations (p.Phe36Tyr, p.Lys109Thr, and p.Gln438Leu), and two previously reported nonsense mutations (p.Ser424*and p.Arg250*). CONCLUSION: Mutations in the protein and DNA-binding domains of IRF6 ranked among the top 0.1% and 1% most deleterious genetic mutations, respectively. Overall, these findings expand the range of VWS mutations and are important for diagnostic and counseling purposes.


Assuntos
Anormalidades Múltiplas/genética , Fenda Labial/genética , Fissura Palatina/genética , Cistos/genética , Fatores Reguladores de Interferon/genética , Lábio/anormalidades , Taxa de Mutação , Sítios de Ligação , Humanos , Fatores Reguladores de Interferon/química
9.
Hum Mol Genet ; 29(5): 845-858, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31943082

RESUMO

SPECC1L mutations have been identified in patients with rare atypical orofacial clefts and with syndromic cleft lip and/or palate (CL/P). These mutations cluster in the second coiled-coil and calponin homology domains of SPECC1L and severely affect the ability of SPECC1L to associate with microtubules. We previously showed that gene-trap knockout of Specc1l in mouse results in early embryonic lethality. We now present a truncation mutant mouse allele, Specc1lΔC510, that results in perinatal lethality. Specc1lΔC510/ΔC510 homozygotes showed abnormal palate rugae but did not show cleft palate. However, when crossed with a gene-trap allele, Specc1lcGT/ΔC510 compound heterozygotes showed a palate elevation delay with incompletely penetrant cleft palate. Specc1lcGT/ΔC510 embryos exhibit transient oral epithelial adhesions at E13.5, which may delay shelf elevation. Consistent with oral adhesions, we show periderm layer abnormalities, including ectopic apical expression of adherens junction markers, similar to Irf6 hypomorphic mutants and Arhgap29 heterozygotes. Indeed, SPECC1L expression is drastically reduced in Irf6 mutant palatal shelves. Finally, we wanted to determine if SPECC1L deficiency also contributed to non-syndromic (ns) CL/P. We sequenced 62 Caucasian, 89 Filipino, 90 Ethiopian, 90 Nigerian and 95 Japanese patients with nsCL/P and identified three rare coding variants (p.Ala86Thr, p.Met91Iso and p.Arg546Gln) in six individuals. These variants reside outside of SPECC1L coiled-coil domains and result in milder functional defects than variants associated with syndromic clefting. Together, our data indicate that palate elevation is sensitive to deficiency of SPECC1L dosage and function and that SPECC1L cytoskeletal protein functions downstream of IRF6 in palatogenesis.


Assuntos
Fissura Palatina/patologia , Fatores Reguladores de Interferon/metabolismo , Mutação , Fosfoproteínas/fisiologia , Animais , Fissura Palatina/genética , Fissura Palatina/metabolismo , Feminino , Humanos , Fatores Reguladores de Interferon/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
10.
Dev Biol ; 458(2): 246-256, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31765609

RESUMO

In this study, we investigated the role of the transcription factor Six2 in palate development. Six2 was selected using the SysFACE tool to predict genes from the 2p21 locus, a region associated with clefting in humans by GWAS, that are likely to be involved in palatogenesis. We functionally validated the predicted role of Six2 in palatogenesis by showing that 22% of Six2 null embryos develop cleft palate. Six2 contributes to palatogenesis by promoting mesenchymal cell proliferation and regulating bone formation. The clefting phenotype in Six2-/- embryos is similar to Pax9 null embryos, so we examined the functional relationship of these two genes. Mechanistically, SIX2 binds to a PAX9 5' upstream regulatory element and activates PAX9 expression. In addition, we identified a human SIX2 coding variant (p.Gly264Glu) in a proband with cleft palate. We show this missense mutation affects the stability of the SIX2 protein and leads to decreased PAX9 expression. The low penetrance of clefting in the Six2 null mouse combined with the mutation in one patient with cleft palate underscores the potential combinatorial interactions of other genes in clefting. Our study demonstrates that Six2 interacts with the developmental gene regulatory network in the developing palate.


Assuntos
Proteínas de Homeodomínio/metabolismo , Fator de Transcrição PAX9/genética , Fatores de Transcrição/metabolismo , Animais , Fissura Palatina/embriologia , Fissura Palatina/genética , Anormalidades Craniofaciais/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Homeobox , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfogênese , Proteínas do Tecido Nervoso/metabolismo , Osteogênese , Fator de Transcrição PAX9/metabolismo , Fatores de Transcrição Box Pareados , Palato/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética
11.
Hum Mol Genet ; 28(6): 1038-1051, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30452639

RESUMO

Orofacial clefts are common developmental disorders that pose significant clinical, economical and psychological problems. We conducted genome-wide association analyses for cleft palate only (CPO) and cleft lip with or without palate (CL/P) with ~17 million markers in sub-Saharan Africans. After replication and combined analyses, we identified novel loci for CPO at or near genome-wide significance on chromosomes 2 (near CTNNA2) and 19 (near SULT2A1). In situ hybridization of Sult2a1 in mice showed expression of SULT2A1 in mesenchymal cells in palate, palatal rugae and palatal epithelium in the fused palate. The previously reported 8q24 was the most significant locus for CL/P in our study, and we replicated several previously reported loci including PAX7 and VAX1.


Assuntos
População Negra/genética , Fissura Palatina/genética , Genética Populacional , Genoma Humano , Genômica , Locos de Características Quantitativas , Alelos , Animais , Mapeamento Cromossômico , Modelos Animais de Doenças , Elementos Facilitadores Genéticos , Feminino , Expressão Gênica , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genômica/métodos , Genótipo , Humanos , Masculino , Camundongos , Razão de Chances , Polimorfismo de Nucleotídeo Único
12.
Mol Genet Genomic Med ; 6(6): 924-932, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30141273

RESUMO

BACKGROUND: Orofacial clefts are the most common malformations of the head and neck region. Genetic and environmental factors have been implicated in the etiology of these traits. METHODS: We recently conducted genotyping of individuals from the African population using the multiethnic genotyping array (MEGA) to identify common genetic variation associated with nonsyndromic orofacial clefts. The data cleaning of this dataset allowed for screening of annotated sex versus genetic sex, confirmation of identify by descent and identification of large chromosomal anomalies. RESULTS: We identified the first reported orofacial cleft case associated with paternal uniparental disomy (patUPD) on chromosome 22. We also identified a de novo deletion on chromosome 18. In addition to chromosomal anomalies, we identified cases with molecular karyotypes suggesting Klinefelter syndrome, Turner syndrome and Triple X syndrome. CONCLUSION: Observations from our study support the need for genetic testing when clinically indicated in order to exclude chromosomal anomalies associated with clefting. The identification of these chromosomal anomalies and sex aneuploidies is important in genetic counseling for families that are at risk. Clinicians should share any identified genetic findings and place them in context for the families during routine clinical visits and evaluations.


Assuntos
Transtornos Cromossômicos/genética , Fenda Labial/genética , Fissura Palatina/genética , Trissomia/genética , Dissomia Uniparental/genética , Adulto , Criança , Deleção Cromossômica , Transtornos Cromossômicos/patologia , Cromossomos Humanos Par 18/genética , Cromossomos Humanos Par 22/genética , Fenda Labial/patologia , Fissura Palatina/patologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Mosaicismo , Trissomia/patologia , Dissomia Uniparental/patologia
13.
Cleft Palate Craniofac J ; 55(5): 736-742, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29489415

RESUMO

OBJECTIVE: Cleft lip and/or cleft palate (CL/P) are congenital anomalies of the face and have multifactorial etiology, with both environmental and genetic risk factors playing crucial roles. Though at least 40 loci have attained genomewide significant association with nonsyndromic CL/P, these loci largely reside in noncoding regions of the human genome, and subsequent resequencing studies of neighboring candidate genes have revealed only a limited number of etiologic coding variants. The present study was conducted to identify etiologic coding variants in GREM1, a locus that has been shown to be largely associated with cleft of both lip and soft palate. PATIENTS AND METHOD: We resequenced DNA from 397 sub-Saharan Africans with CL/P and 192 controls using Sanger sequencing. Following analyses of the sequence data, we observed 2 novel coding variants in GREM1. These variants were not found in the 192 African controls and have never been previously reported in any public genetic variant database that includes more than 5000 combined African and African American controls or from the CL/P literature. RESULTS: The novel variants include p.Pro164Ser in an individual with soft palate cleft only and p.Gly61Asp in an individual with bilateral cleft lip and palate. The proband with the p.Gly61Asp GREM1 variant is a van der Woude (VWS) case who also has an etiologic variant in IRF6 gene. CONCLUSION: Our study demonstrated that there is low number of etiologic coding variants in GREM1, confirming earlier suggestions that variants in regulatory elements may largely account for the association between this locus and CL/P.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , África Subsaariana/epidemiologia , Fenda Labial/epidemiologia , Fissura Palatina/epidemiologia , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único
14.
Mol Genet Genomic Med ; 5(2): 164-171, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28361103

RESUMO

BACKGROUND: Orofacial clefts are congenital malformations of the orofacial region, with a global incidence of one per 700 live births. Interferon Regulatory Factor 6 (IRF6) (OMIM:607199) gene has been associated with the etiology of both syndromic and nonsyndromic orofacial clefts. The aim of this study was to show evidence of potentially pathogenic variants in IRF6 in orofacial clefts cohorts from Africa. METHODS: We carried out Sanger Sequencing on DNA from 184 patients with nonsyndromic orofacial clefts and 80 individuals with multiple congenital anomalies that presented with orofacial clefts. We sequenced all the nine exons of IRF6 as well as the 5' and 3' untranslated regions. In our analyses pipeline, we used various bioinformatics tools to detect and describe the potentially etiologic variants. RESULTS: We observed that potentially etiologic exonic and splice site variants were nonrandomly distributed among the nine exons of IRF6, with 92% of these variants occurring in exons 4 and 7. Novel variants were also observed in both nonsyndromic orofacial clefts (p.Glu69Lys, p.Asn185Thr, c.175-2A>C and c.1060+26C>T) and multiple congenital anomalies (p.Gly65Val, p.Lys320Asn and c.379+1G>T) patients. Our data also show evidence of compound heterozygotes that may modify phenotypes that emanate from IRF6 variants. CONCLUSIONS: This study demonstrates that exons 4 and 7 of IRF6 are mutational 'hotspots' in our cohort and that IRF6 mutants-induced orofacial clefts may be prevalent in the Africa population, however, with variable penetrance and expressivity. These observations are relevant for detection of high-risk families as well as genetic counseling. In conclusion, we have shown that there may be a need to combine both molecular and clinical evidence in the grouping of orofacial clefts into syndromic and nonsyndromic forms.

15.
Hum Mol Genet ; 25(13): 2862-2872, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27033726

RESUMO

Orofacial clefts (OFCs), which include non-syndromic cleft lip with or without cleft palate (CL/P), are among the most common birth defects in humans, affecting approximately 1 in 700 newborns. CL/P is phenotypically heterogeneous and has a complex etiology caused by genetic and environmental factors. Previous genome-wide association studies (GWASs) have identified at least 15 risk loci for CL/P. As these loci do not account for all of the genetic variance of CL/P, we hypothesized the existence of additional risk loci. We conducted a multiethnic GWAS in 6480 participants (823 unrelated cases, 1700 unrelated controls and 1319 case-parent trios) with European, Asian, African and Central and South American ancestry. Our GWAS revealed novel associations on 2p24 near FAM49A, a gene of unknown function (P = 4.22 × 10-8), and 19q13 near RHPN2, a gene involved in organizing the actin cytoskeleton (P = 4.17 × 10-8). Other regions reaching genome-wide significance were 1p36 (PAX7), 1p22 (ARHGAP29), 1q32 (IRF6), 8q24 and 17p13 (NTN1), all reported in previous GWASs. Stratification by ancestry group revealed a novel association with a region on 17q23 (P = 2.92 × 10-8) among individuals with European ancestry. This region included several promising candidates including TANC2, an oncogene required for development, and DCAF7, a scaffolding protein required for craniofacial development. In the Central and South American ancestry group, significant associations with loci previously identified in Asian or European ancestry groups reflected their admixed ancestry. In summary, we have identified novel CL/P risk loci and suggest new genes involved in craniofacial development, confirming the highly heterogeneous etiology of OFCs.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Povo Asiático/genética , População Negra/genética , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 2/genética , Etnicidade , Feminino , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , População Branca/genética
16.
Am J Hum Genet ; 98(4): 744-54, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27018472

RESUMO

Cleft palate (CP) is a common birth defect occurring in 1 in 2,500 live births. Approximately half of infants with CP have a syndromic form, exhibiting other physical and cognitive disabilities. The other half have nonsyndromic CP, and to date, few genes associated with risk for nonsyndromic CP have been characterized. To identify such risk factors, we performed a genome-wide association study of this disorder. We discovered a genome-wide significant association with a missense variant in GRHL3 (p.Thr454Met [c.1361C>T]; rs41268753; p = 4.08 × 10(-9)) and replicated the result in an independent sample of case and control subjects. In both the discovery and replication samples, rs41268753 conferred increased risk for CP (OR = 8.3, 95% CI 4.1-16.8; OR = 2.16, 95% CI 1.43-3.27, respectively). In luciferase transactivation assays, p.Thr454Met had about one-third of the activity of wild-type GRHL3, and in zebrafish embryos, perturbed periderm development. We conclude that this mutation is an etiologic variant for nonsyndromic CP and is one of few functional variants identified to date for nonsyndromic orofacial clefting. This finding advances our understanding of the genetic basis of craniofacial development and might ultimately lead to improvements in recurrence risk prediction, treatment, and prognosis.


Assuntos
Fissura Palatina/genética , Proteínas de Ligação a DNA/genética , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética , Animais , Estudos de Casos e Controles , Fissura Palatina/diagnóstico , Modelos Animais de Doenças , Etnicidade/genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Mutação de Sentido Incorreto , Fatores de Risco , Peixe-Zebra/embriologia , Peixe-Zebra/genética
17.
Mol Genet Genomic Med ; 2(3): 254-60, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24936515

RESUMO

Orofacial clefts (OFC) are complex genetic traits that are often classified as syndromic or nonsyndromic clefts. Currently, there are over 500 types of syndromic clefts in the Online Mendelian Inheritance in Man (OMIM) database, of which Van der Woude syndrome (VWS) is one of the most common (accounting for 2% of all OFC). Popliteal pterygium syndrome (PPS) is considered to be a more severe form of VWS. Mutations in the IRF6 gene have been reported worldwide to cause VWS and PPS. Here, we report studies of families with VWS and PPS in sub-Saharan Africa. We screened the DNA of eight families with VWS and one family with PPS from Nigeria and Ethiopia by Sanger sequencing of the most commonly affected exons in IRF6 (exons 3, 4, 7, and 9). For the VWS families, we found a novel nonsense variant in exon 4 (p.Lys66X), a novel splice-site variant in exon 4 (p.Pro126Pro), a novel missense variant in exon 4 (p.Phe230Leu), a previously reported splice-site variant in exon 7 that changes the acceptor splice site, and a known missense variant in exon 7 (p.Leu251Pro). A previously known missense variant was found in exon 4 (p.Arg84His) in the PPS family. All the mutations segregate in the families. Our data confirm the presence of IRF6-related VWS and PPS in sub-Saharan Africa and highlights the importance of screening for novel mutations in known genes when studying diverse global populations. This is important for counseling and prenatal diagnosis for high-risk families.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...