Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cells ; 11(15)2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35892575

RESUMO

Childhood malnutrition affects physiology and development. It increases infection rates, which may not present clinical signs in severe cases. The World Health Organization recommends prophylactic treatment with cotrimoxazole (SXT) and nutritional recovery to overcome this issue. This treatment is controversial, since evidence of a reduction in morbidity and mortality is not a consensus and could induce the development of antibiotic-resistant bacteria. Moreover, the impact of using this wide-spectrum antibiotic on gut microbiota in a critical period of development, and weakness is unknown. To understand how SXT prophylaxis could affect gut microbiota in undernutrition, we induced protein-energy undernutrition (PEU) in weaning C57BL/6 mice for three weeks and treated animals with SXT for two weeks. Using 16S rRNA gene sequencing, we compared the taxonomic composition and metabolic pathways of control mice, animals submitted to undernutrition (UND), treated with SXT, or undernourished and SXT treated (UND + SXT). We identified that UND mice had a significant increase in predicted pathways related to metabolic syndromes later in life. The prophylactic SXT treatment alone resulted in a significant loss in community richness and beta diversity. Furthermore, we identified the reduction of three genera in SXT treated mice, including the butyrate producers Faecalibacterium and Anaerotruncus. Both UND and double challenge (UND + SXT) resulted in a reduction of the amino acid's biosynthesis pathway related to cell growth. Our results show that the SXT prophylaxis of young mice during an undernourishment period did not re-establish the undernourished microbiota community composition similar to healthy controls but induced a distinct dysbiotic profile with functional metabolic consequences.


Assuntos
Disbiose , Desnutrição , Animais , Antibacterianos , Disbiose/microbiologia , Desnutrição/complicações , Desnutrição/tratamento farmacológico , Desnutrição/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Combinação Trimetoprima e Sulfametoxazol
2.
Braz. arch. biol. technol ; 64: e21210144, 2021. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1350275

RESUMO

Abstract Gonadotropin-releasing hormone (GnRH) is one of the main targets for the development of immunocontraceptives vaccines. The aim of this study was to clone and express the recombinant GnRH fused to the B subunit of Escherichia coli heat-labile enterotoxin (LTB) molecule in Pichia pastoris and Escherichia coli platforms and evaluate their immunogenicity in mice. P. pastoris (pGnRH/LTB) and E. coli (eGnRH/LTB) platforms were able to express GnRH/LTB expected band with ~ 21 kDa. Both constructions were immunogenic in mice. Similar IgG kinetics was observed for both construction when it was used as ELISA antigen respectively, showing significant (p<0.05) IgG levels 5-fold higher than a commercial vaccine and 14-fold higher than the controls. The histological effects of pGnRH/LTB as well as eGnRH/LTB proteins demonstrated a significant effect on the gonads, characterized by atrophy of seminiferous tubules, absence of spermatogenesis and reduction of Leydig cells. Both constructions were able to induce antibodies that block the hormone effect, suggesting the potential of GnRH/LTB, independently of the P. pastoris or E. coli platform used, as a vaccine candidate for immunocontraception.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...