Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychol ; 12: 648586, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093335

RESUMO

Dual-task paradigms encompass a broad range of approaches to measure cognitive load in instructional settings. As a common characteristic, an additional task is implemented alongside a learning task to capture the individual's unengaged cognitive capacities during the learning process. Measures to determine these capacities are, for instance, reaction times and interval errors on the additional task, while the performance on the learning task is to be maintained. Opposite to retrospectively applied subjective ratings, the continuous assessment within a dual-task paradigm allows to simultaneously monitor changes in the performance related to previously defined tasks. Following the Cognitive Load Theory, these changes in performance correspond to cognitive changes related to the establishment of permanently existing knowledge structures. Yet the current state of research indicates a clear lack of standardization of dual-task paradigms over study settings and task procedures. Typically, dual-task designs are adapted uniquely for each study, albeit with some similarities across different settings and task procedures. These similarities range from the type of modality to the frequency used for the additional task. This results in a lack of validity and comparability between studies due to arbitrarily chosen patterns of frequency without a sound scientific base, potentially confounding variables, or undecided adaptation potentials for future studies. In this paper, the lack of validity and comparability between dual-task settings will be presented, the current taxonomies compared and the future steps for a better standardization and implementation discussed.

2.
Cogn Res Princ Implic ; 3(1): 46, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30535538

RESUMO

Schema acquisition processes comprise an essential source of cognitive demands in learning situations. To shed light on related mechanisms and influencing factors, this study applied a continuous multi-measure approach for cognitive load assessment. In a dual-task setting, a sample of 123 student participants learned visually presented symbol combinations with one of two levels of complexity while memorizing auditorily presented number sequences. Learners' cognitive load during the learning task was addressed by secondary task performance, prosodic speech parameters (pauses, articulation rate), and physiological markers (heart rate, skin conductance response). While results revealed increasing primary and secondary task performance over the trials, decreases in speech and physiological parameters indicated a reduction in the overall level of cognitive load with task progression. In addition, the robustness of the acquired schemata was confirmed by a transfer task that required participants to apply the obtained symbol combinations. Taken together, the observed pattern of evidence supports the idea of a logarithmically decreasing progression of cognitive load with increasing schema acquisition, and further hints on robust and stable transfer performance, even under enhanced transfer demands. Finally, theoretical and practical consequences consider evidence on desirable difficulties in learning as well as the potential of multimodal cognitive load detection in learning applications.

3.
Acta Psychol (Amst) ; 179: 30-41, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28710922

RESUMO

Cognitive processes related to schema acquisition comprise an essential source of demands in learning situations. Since the related amount of cognitive load is supposed to change over time, plausible temporal models of load progression based on different theoretical backgrounds are inspected in this study. A total of 116 student participants completed a basal symbol sequence learning task, which provided insights into underlying cognitive dynamics. Two levels of task complexity were determined by the amount of elements within the symbol sequence. In addition, interruptions due to an embedded secondary task occurred at five predefined stages over the task. Within the resulting 2x5-factorial mixed between-within design, the continuous monitoring of efficiency in learning performance enabled assumptions on relevant resource investment. From the obtained results, a nonlinear change of learning efficiency over time seems most plausible in terms of cognitive load progression. Moreover, different effects of the induced interruptions show up in conditions of task complexity, which indicate the activation of distinct cognitive mechanisms related to structural aspects of the task. Findings are discussed in the light of evidence from research on memory and information processing.


Assuntos
Cognição/fisiologia , Aprendizagem/fisiologia , Análise e Desempenho de Tarefas , Adolescente , Adulto , Feminino , Humanos , Masculino , Memória , Resolução de Problemas , Teoria Psicológica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...