Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 17(3): e1009403, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33690635

RESUMO

The evolution of insect resistance to insecticides is frequently associated with overexpression of one or more cytochrome P450 enzyme genes. Although overexpression of CYP450 genes is a well-known mechanism of insecticide resistance, the underlying regulatory mechanisms are poorly understood. Here we uncovered the mechanisms of overexpression of the P450 gene, CYP321A8 in a major pest insect, Spodoptera exigua that is resistant to multiple insecticides. CYP321A8 confers resistance to organophosphate (chlorpyrifos) and pyrethroid (cypermethrin and deltamethrin) insecticides in this insect. Constitutive upregulation of transcription factors CncC/Maf are partially responsible for upregulated expression of CYP321A8 in the resistant strain. Reporter gene assays and site-directed mutagenesis analyses demonstrated that CncC/Maf enhanced the expression of CYP321A8 by binding to specific sites in the promoter. Additional cis-regulatory elements resulting from a mutation in the CYP321A8 promoter in the resistant strain facilitates the binding of the orphan nuclear receptor, Knirps, and enhances the promoter activity. These results demonstrate that two independent mechanisms; overexpression of transcription factors and mutations in the promoter region resulting in a new cis-regulatory element that facilitates binding of the orphan nuclear receptor are involved in overexpression of CYP321A8 in insecticide-resistant S. exigua.


Assuntos
Resistência a Inseticidas/genética , Inseticidas/farmacologia , Sequências Reguladoras de Ácido Nucleico , Spodoptera/efeitos dos fármacos , Spodoptera/genética , Animais , Sequência de Bases , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica , Proteínas de Insetos/genética , Mutação , Regiões Promotoras Genéticas
2.
Ecol Evol ; 10(11): 4816-4827, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32551063

RESUMO

The rice striped stem borer (SSB, Chilo suppressalis) is one of the most destructive pests of rice plants. Si-mediated rice defense against various pests has been widely reported, and sodium silicate (SS) has been used as an effective source of silicon for application to plants. However, there is quite limited information about the direct effects of Si application on herbivorous insects. SSB larval performance and their insecticide tolerance were examined after they had been reared either on rice plants cultivated in nutrient solution containing 0.5 and 2.0 mM SS or on artificial diets with 0.1% and 0.5% SS. SS amendment in either rice culture medium or artificial diets significantly suppressed the enzymatic activities of acetylcholinesterase, glutathione S-transferases, and levels of cytochrome P450 protein in the midgut of C. suppressalis larvae. Larvae fed on diets containing SS showed lower insecticide tolerance. Additionally, RNA-seq analysis showed that SS-mediated larval insecticide tolerance was closely associated with fatty acid biosynthesis and pyruvate metabolism pathways. Our results suggest that Si not only enhances plant resistance against insect herbivore, but also impairs the insect's capacity to detoxify the insecticides. This should be considered as another important aspect in Si-mediated plant-insect interaction and may provide a novel approach of pest management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...