Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 181: 684-692, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29254023

RESUMO

A nano-composite from biologically obtained chitin nanofillers homogenously dispersed in a poly(ε-caprolactone) matrix was successfully achieved by an ultrasonication-assisted non-toxic and non-aqueous methodology. For this purpose, biological chitin was obtained from lactic acid fermentation of shrimp wastes and converted into chitin whiskers by acidic hydrolysis in a novel process at low temperature (4°C) that enhanced the distribution and yield. Additionally, the polyester matrix was enzymatically produced in a non-toxic compressed fluid (1,1,1,2-tetrafluoroethane at 25bar and 65°C) medium. The homogeneous distribution of the nanofiller in the matrix was corroborated by confocal and atomic force microscopies. Films of the nanocomposite were physicochemically characterized to assess its adequate properties. Additionally, the qualitative viability of human fibroblasts and osteoblasts cells was studied on the produced nanocomposite films showing good biocompatibility.


Assuntos
Quitina/química , Nanocompostos/química , Nanopartículas/química , Poliésteres/química , Adulto , Animais , Candida/enzimologia , Criança , Quitina/isolamento & purificação , Fibroblastos , Química Verde , Humanos , Hidrocarbonetos Fluorados/química , Hidrólise , Lactobacillus plantarum/química , Lipase/química , Osteoblastos , Tamanho da Partícula , Penaeidae/química
2.
J Biomed Mater Res A ; 105(10): 2875-2891, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28589667

RESUMO

Autologous skin transplantation is today's "gold standard" treatment for full-thickness burns. However, when > 30% of total body surface area is damaged, there is an important shortage of autologous donor sites for skin grafting; then, treatment alternatives become crucial. Such alternatives can be based on polymeric scaffolds capable of functioning as protective covers and cells/factors carriers. Chitosan (CTS) is a natural-derived polymer with relevant biological-related properties but poor mechanical performance. Improved mechanical properties can be achieved through lactic acid grafting (LA-g); nevertheless, LA-g affects the biological response towards the CTS-based materials. In this work, CTS-LA scaffolds with different LA-g percentages were synthesized and evaluated to determine appropriate LA-g degrees for full-thickness burns treatment. In vitro results indicated that the higher the LA-g percentage, the lower the capability of the scaffolds to sustain fibroblasts culture. Scaffolds with LA-g around 28% (CTS-LA28) sustained cell culture and allowed normal cell functionality. Further evaluation of CTS-LA28 as acellular and cellular grafts in a full-thickness burn mouse model showed that at 28 days post-burn, macroscopic characteristic of the reparation tissue were closer to healthy skin when cellular grafts were used for treatment; histological evaluation also showed that dermis cellularity and collagenous fibers structure were similar to those in healthy skin when cellular grafts were used for burns treatment. © 2017 Wiley Periodicals Inc. J Biomed Mater Res Part A: 105A: 2875-2891, 2017.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Queimaduras/terapia , Quitosana/uso terapêutico , Ácido Láctico/uso terapêutico , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Queimaduras/patologia , Células Cultivadas , Quitosana/química , Fibroblastos/citologia , Fibroblastos/patologia , Humanos , Ácido Láctico/química , Masculino , Camundongos , Camundongos Nus , Pele/patologia , Cicatrização
3.
Molecules ; 21(4): 469, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-27070568

RESUMO

A chitosan from biologically obtained chitin was successfully grafted with d,l-lactic acid (LA) in aqueous media using p-toluenesulfonic acid as catalyst to obtain a non-toxic, biodegradable packaging material that was characterized using scanning electron microscopy, water vapor permeability, and relative humidity (RH) losses. Additionally, the grafting in chitosan with LA produced films with improved mechanical properties. This material successfully extended the shelf life of fresh cheese and inhibited the growth of Listeria monocytogenes during 14 days at 4 °C and 22% RH, whereby inoculated samples with chitosan-g-LA packaging presented full bacterial inhibition. The results were compared to control samples and commercial low-density polyethylene packaging.


Assuntos
Queijo/microbiologia , Quitosana/farmacologia , Embalagem de Alimentos , Listeria monocytogenes/efeitos dos fármacos , Quitina/química , Quitosana/química , Microbiologia de Alimentos , Humanos , Ácido Láctico/química , Ácido Láctico/farmacologia , Listeria monocytogenes/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...