Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 11(1): 444, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462417

RESUMO

A dysfunction of the glutamatergic transmission, especially of the NMDA receptor (NMDAR), constitutes one of the main biological substrate of psychotic disorders, such as schizophrenia. The NMDAR signaling hypofunction, through genetic and/or environmental insults, would cause a neurodevelopmental myriad of molecular, cellular, and network alterations that persist throughout life. Yet, the mechanisms underpinning NMDAR dysfunctions remain elusive. Here, we compared the membrane trafficking of NMDAR in three gold-standard models of schizophrenia, i.e., patient's cerebrospinal fluids, genetic manipulations of susceptibility genes, and prenatal developmental alterations. Using a combination of single nanoparticle tracking, electrophysiological, biochemical, and behavioral approaches in rodents, we identified that the NMDAR trafficking in hippocampal neurons was consistently altered in all these different models. Artificial manipulations of the NMDAR surface dynamics with competing ligands or antibody-induced receptor cross-link in the developing rat brain were sufficient to regulate the adult acoustic startle reflex and compensate for an early pathological challenge. Collectively, we show that the NMDAR trafficking is markedly altered in all clinically relevant models of psychosis, opening new avenues of therapeutical strategies.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Animais , Hipocampo/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais
2.
Nat Commun ; 7: 10947, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26971573

RESUMO

Single-molecule imaging has changed the way we understand many biological mechanisms, particularly in neurobiology, by shedding light on intricate molecular events down to the nanoscale. However, current single-molecule studies in neuroscience have been limited to cultured neurons or organotypic slices, leaving as an open question the existence of fast receptor diffusion in intact brain tissue. Here, for the first time, we targeted dopamine receptors in vivo with functionalized quantum dots and were able to perform single-molecule tracking in acute rat brain slices. We propose a novel delocalized and non-inflammatory way of delivering nanoparticles (NPs) in vivo to the brain, which allowed us to label and track genetically engineered surface dopamine receptors in neocortical neurons, revealing inherent behaviour and receptor activity regulations. We thus propose a NP-based platform for single-molecule studies in the living brain, opening new avenues of research in physiological and pathological animal models.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Pontos Quânticos , Receptores Dopaminérgicos/metabolismo , Animais , Animais Recém-Nascidos , Antígeno CD11b/metabolismo , Eletroporação , Hipocampo/citologia , Imuno-Histoquímica , Injeções Intraventriculares , Microglia/metabolismo , Nanopartículas , Nanotecnologia/métodos , Ratos
3.
Biol Open ; 1(8): 693-704, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23213462

RESUMO

Meso-diencephalic dopaminergic (mdDA) neurons are critical for motor control and cognitive functioning and their loss or dysfunction is associated with disorders such as Parkinson's disease (PD), schizophrenia and addiction. However, relatively little is known about the molecular mechanisms underlying mdDA neuron development and maintenance. Here, we determined the spatiotemporal map of genes involved in the development of mdDA neurons to gain further insight into their molecular programming. Genome-wide gene expression profiles of the developing ventral mesencephalon (VM) were compared at different developmental stages leading to the identification of novel regulatory roles of neuronal signaling through nicotinic acthylcholine receptors (Chrna6 and Chrnb3 subunits) and the identification of novel transcription factors (Oc2 and 3) involved in the generation of the mdDA neuronal field. We show here that Pitx3, in cooperation with Nurr1, is the critical component in the activation of the Chrna6 and Chrnb3 subunits in mdDA neurons. Furthermore, we provide evidence of two divergent regulatory pathways resulting in the expression of Chrna6 and Chrnb3 respectively.

4.
J Comp Neurol ; 520(7): 1424-41, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22102297

RESUMO

The A13 dopaminergic nucleus belongs to the incerto-hypothalamic area. It is thought to exert autonomous roles by integrating sensory input to autonomic, neuroendocrine, and motor output. Although its early development has been well characterized, the factors that contribute to later steps of its formation remain unknown. Transcription factors of the Onecut family have been detected in the A13 nucleus, raising the question of possible roles of these factors during A13 development. Using a combination of immunofluorescence analyses on sections and after whole-mount labeling followed by 3D reconstructions, we further characterized the second phase of development of the A13 nucleus in the mouse, described the distribution of the Onecut proteins throughout A13 development, and analyzed the phenotype of this nucleus in single or compound mutant embryos for the Onecut factors. Here we show that A13 development can be divided into two successive phases. First, during radial migration toward the pial surface the A13 cells differentiate into dopaminergic neurons. Second, these cells gather in the vicinity of the third ventricle. Onecut factors are dynamically and differentially expressed in the A13 nucleus during these two phases of development. In Onecut mutant embryos, the A13 neurons differentiate normally but scatter in the diencephalon and fail to properly gather close to the third ventricle. Hence, Onecut factors are markers of the A13 nucleus throughout embryonic development. They are dispensable for the first phase of A13 development but are required for the second phase of development and for maintenance of this nucleus.


Assuntos
Diencéfalo/embriologia , Diencéfalo/metabolismo , Neurogênese/fisiologia , Fatores de Transcrição Onecut/metabolismo , Animais , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Imunofluorescência , Hibridização In Situ , Camundongos , Camundongos Mutantes
5.
Neurosci Lett ; 395(1): 23-7, 2006 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-16330146

RESUMO

The present in vivo electrophysiological studies in anesthetized rat were undertaken to assess the effects of the selective serotonin (5-HT) reuptake inhibitor (SSRI) escitalopram alone or in combination with the R-citalopram (the S- and R-enantiomers of citalopram), on both long-term potentiation (LTP) in the CA(1) region of dorsal hippocampus and spontaneous firing activity of dorsal raphe (DR) 5-HT neurons. At the postsynaptic level, neither escitalopram (10 mg/kg, i.p.) nor R-citalopram (20 mg/kg, i.p.) modified basal synaptic transmission but only escitalopram impaired LTP expression. Importantly, R-citalopram counteracted significantly the escitalopram-induced decrease of LTP. At the pre-synaptic level, escitalopram (25-75 microg/kg, i.v.) dose-dependently suppressed the spontaneous firing activity of DR 5-HT neurons and this suppressant effect was significantly prevented by a prior injection of R-citalopram (10 mg/kg, i.p.). These results support a role of allosteric binding sites of 5-HT transporter in the regulation of long-lasting CA(1) synaptic plasticity and DR 5-HT neuronal firing activity.


Assuntos
Potenciais de Ação/fisiologia , Citalopram/administração & dosagem , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Transmissão Sináptica/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Citalopram/análogos & derivados , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Inibidores Seletivos de Recaptação de Serotonina/classificação , Estereoisomerismo , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...