Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(7): 2565-2576, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38148604

RESUMO

American Trypanosomiasis, also known as Chagas disease, is caused by the protozoan Trypanosoma cruzi and exhibits limited options for treatment. Natural products offer various structurally complex metabolites with biological activities, including those with anti-T. cruzi potential. The discovery and development of prototypes based on natural products frequently display multiple phases that could be facilitated by machine learning techniques to provide a fast and efficient method for selecting new hit candidates. Using Random Forest and k-Nearest Neighbors, two models were constructed to predict the biological activity of natural products from plants against intracellular amastigotes of T. cruzi. The diterpenoid andrographolide was identified from a virtual screening as a promising hit compound. Hereafter, it was isolated from Cymbopogon schoenanthus and chemically characterized by spectral data analysis. Andrographolide was evaluated against trypomastigote and amastigote forms of T. cruzi, showing IC50 values of 29.4 and 2.9 µM, respectively, while the standard drug benznidazole displayed IC50 values of 17.7 and 5.0 µM, respectively. Additionally, the isolated compound exhibited a reduced cytotoxicity (CC50 = 92.8 µM) against mammalian cells and afforded a selectivity index (SI) of 32, similar to that of benznidazole (SI = 39). From the in silico analyses, we can conclude that andrographolide fulfills many requirements implemented by DNDi to be a hit compound. Therefore, this work successfully obtained machine learning models capable of predicting the activity of compounds against intracellular forms of T. cruzi.


Assuntos
Produtos Biológicos , Doença de Chagas , Cymbopogon , Diterpenos , Nitroimidazóis , Trypanosoma cruzi , Animais , Doença de Chagas/tratamento farmacológico , Diterpenos/farmacologia , Diterpenos/metabolismo , Produtos Biológicos/metabolismo , Mamíferos
2.
J Chem Inf Model, v. 64, n. 7, p. 2565-2576, dez. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5215

RESUMO

American Trypanosomiasis, also known as Chagas disease, is caused by the protozoan Trypanosoma cruzi and exhibits limited options for treatment. Natural products offer various structurally complex metabolites with biological activities, including those with anti-T. cruzi potential. The discovery and development of prototypes based on natural products frequently display multiple phases that could be facilitated by machine learning techniques to provide a fast and efficient method for selecting new hit candidates. Using Random Forest and k-Nearest Neighbors, two models were constructed to predict the biological activity of natural products from plants against intracellular amastigotes of T. cruzi. The diterpenoid andrographolide was identified from a virtual screening as a promising hit compound. Hereafter, it was isolated from Cymbopogon schoenanthus and chemically characterized by spectral data analysis. Andrographolide was evaluated against trypomastigote and amastigote forms of T. cruzi, showing IC50 values of 29.4 and 2.9 μM, respectively, while the standard drug benznidazole displayed IC50 values of 17.7 and 5.0 μM, respectively. Additionally, the isolated compound exhibited a reduced cytotoxicity (CC50 = 92.8 μM) against mammalian cells and afforded a selectivity index (SI) of 32, similar to that of benznidazole (SI = 39). From the in silico analyses, we can conclude that andrographolide fulfills many requirements implemented by DNDi to be a hit compound. Therefore, this work successfully obtained machine learning models capable of predicting the activity of compounds against intracellular forms of T. cruzi.

3.
Expert Opin Drug Discov ; 14(1): 23-33, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30488731

RESUMO

INTRODUCTION: Novel drug discovery remains an enormous challenge, with various computer-aided drug design (CADD) approaches having been widely employed for this purpose. CADD, specifically the commonly used support vector machines (SVMs), can employ machine learning techniques. SVMs and their variations offer numerous drug discovery applications, which range from the classification of substances (as active or inactive) to the construction of regression models and the ranking/virtual screening of databased compounds. Areas covered: Herein, the authors consider some of the applications of SVMs in medicinal chemistry, illustrating their main advantages and disadvantages, as well as trends in their utilization, via the available published literature. The aim of this review is to provide an up-to-date review of the recent applications of SVMs in drug discovery as described by the literature, thereby highlighting their strengths, weaknesses, and future challenges. Expert opinion: Techniques based on SVMs are considered as powerful approaches in early drug discovery. The ability of SVMs to classify active or inactive compounds has enabled the prioritization of substances for virtual screening. Indeed, one of the main advantages of SVMs is related to their potential in the analysis of nonlinear problems. However, despite successes in employing SVMs, the challenges of improving accuracy remain.


Assuntos
Desenho de Fármacos , Descoberta de Drogas/métodos , Máquina de Vetores de Suporte , Humanos , Aprendizado de Máquina , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...