Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(3): 033104, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820054

RESUMO

We present a setup for time-resolved spectroscopic ellipsometry in a pump-probe scheme using femtosecond laser pulses. As a probe, the system deploys supercontinuum white light pulses that are delayed with respect to single-wavelength pump pulses. A polarizer-sample-compensator-analyzer configuration allows ellipsometric measurements by scanning the compensator azimuthal angle. The transient ellipsometric parameters are obtained from a series of reflectance-difference spectra that are measured for various pump-probe delays and polarization (compensator) settings. The setup is capable of performing time-resolved spectroscopic ellipsometry from the near-infrared through the visible to the near-ultraviolet spectral range at 1.3 eV-3.6 eV. The temporal resolution is on the order of 100 fs within a delay range of more than 5 ns. We analyze and discuss critical aspects such as fluctuations of the probe pulses and imperfections of the polarization optics and present strategies deployed for circumventing related issues.

2.
J Phys Condens Matter ; 33(25)2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33845472

RESUMO

The use of biomolecules as capping and reducing agents in the synthesis of metallic nanoparticles constitutes a promising framework to achieve desired functional properties with minimal toxicity. The system's complexity and the large number of variables involved represent a challenge for theoretical and experimental investigations aiming at devising precise synthesis protocols. In this work, we use L-asparagine (Asn), an amino acid building block of large biomolecular systems, to synthesise gold nanoparticles (AuNPs) in aqueous solution at controlled pH. The use of Asn offers a primary system that allows us to understand the role of biomolecules in synthesising metallic nanoparticles. Our results indicate that AuNPs synthesised in acidic (pH 6) and basic (pH 9) environments exhibit somewhat different morphologies. We investigate these AuNPs via Raman scattering experiments and classical molecular dynamics simulations of zwitterionic and anionic Asn states adsorbing on (111)-, (100)-, (110)-, and (311)-oriented gold surfaces. A combined analysis suggests that the underlying mechanism controlling AuNPs geometry correlates with amine's preferential adsorption over ammonium groups, enhanced upon increasing pH. Our simulations reveal that Asn (both zwitterionic and anionic) adsorption on gold (111) is essentially different from adsorption on more open surfaces. Water molecules strongly interact with the gold face-centred-cubic lattice and create traps, on the more open surfaces, that prevent the Asn from diffusing. These results indicate that pH is a relevant parameter in green-synthesis protocols with the capability to control the nanoparticle's geometry, and pave the way to computational studies exploring the effect of water monolayers on the adsorption of small molecules on wet gold surfaces.


Assuntos
Asparagina , Ouro , Nanopartículas Metálicas , Asparagina/química , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Água
3.
Molecules ; 24(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443533

RESUMO

The development of nanomedicines for the treatment of neurodegenerative disorders demands innovative nanoarchitectures for combined loading of multiple neuroprotective compounds. We report dual-drug loaded monoolein-based liquid crystalline architectures designed for the encapsulation of a therapeutic protein and a small molecule antioxidant. Catalase (CAT) is chosen as a metalloprotein, which provides enzymatic defense against oxidative stress caused by reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). Curcumin (CU), solubilized in fish oil, is co-encapsulated as a chosen drug with multiple therapeutic activities, which may favor neuro-regeneration. The prepared self-assembled biomolecular nanoarchitectures are characterized by biological synchrotron small-angle X-ray scattering (BioSAXS) at multiple compositions of the lipid/co-lipid/water phase diagram. Constant fractions of curcumin (an antioxidant) and a PEGylated agent (TPEG1000) are included with regard to the lipid fraction. Stable cubosome architectures are obtained for several ratios of the lipid ingredients monoolein (MO) and fish oil (FO). The impact of catalase on the structural organization of the cubosome nanocarriers is revealed by the variations of the cubic lattice parameters deduced by BioSAXS. The outcome of the cellular uptake of the dual drug-loaded nanocarriers is assessed by performing a bioassay of catalase peroxidatic activity in lysates of nanoparticle-treated differentiated SH-SY5Y human cells. The obtained results reveal the neuroprotective potential of the in vitro studied cubosomes in terms of enhanced peroxidatic activity of the catalase enzyme, which enables the inhibition of H2O2 accumulation in degenerating neuronal cells.


Assuntos
Catalase/química , Curcumina/química , Cristais Líquidos/química , Nanoestruturas/química , Humanos , Peróxido de Hidrogênio/química , Imageamento Tridimensional , Polietilenoglicóis/química , Espécies Reativas de Oxigênio , Espalhamento a Baixo Ângulo , Síncrotrons
4.
Phys Chem Chem Phys ; 20(9): 6274-6286, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29431759

RESUMO

The structural dynamics of charge-transfer states of nitrogen-ligated copper complexes has been extensively investigated in recent years following the development of pump-probe X-ray techniques. In this study we extend this approach towards copper complexes with sulfur coordination and investigate the influence of charge transfer states on the structure of a dicopper(i) complex with coordination by bridging disulfide ligands and additionally tetramethylguanidine units [CuI2(NSSN)2]2+. In order to directly observe and refine the photoinduced structural changes in the solvated complex we applied picosecond pump-probe X-ray absorption spectroscopy (XAS) and wide-angle X-ray scattering (WAXS). Additionally, the ultrafast evolution of the electronic excited states was monitored by femtosecond transient absorption spectroscopy in the UV-Vis probe range. DFT calculations were used to predict molecular geometries and electronic structures of the ground and metal-to-ligand charge transfer states with singlet and triplet spin multiplicities, i.e. S0, 1MLCT and 3MLCT, respectively. Combining these techniques we elucidate the electronic and structural dynamics of the solvated complex upon photoexcitation to the MLCT states. In particular, femtosecond optical transient spectroscopy reveals three distinct timescales of 650 fs, 10 ps and >100 ps, which were assigned as internal conversion to the ground state (Sn → S0), intersystem crossing 1MLCT → 3MLCT, and subsequent relaxation of the triplet to the ground state, respectively. Experimental data collected using both X-ray techniques are in agreement with the DFT-predicted structure for the triplet state, where coordination bond lengths change and one of the S-S bridges is cleaved, causing the movement of two halves of the molecule relative to each other. Extended X-ray absorption fine structure spectroscopy resolves changes in Cu-ligand bond lengths with precision on the order of 0.01 Å, whereas WAXS is sensitive to changes in the global shape related to relative movement of parts of the molecule. The results presented herein widen the knowledge on the electronic and structural dynamics of photoexcited copper-sulfur complexes and demonstrate the potential of combining the pump-probe X-ray absorption and scattering for studies on photoinduced structural dynamics in copper-based coordination complexes.

5.
Anal Chem ; 90(5): 3140-3148, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29327915

RESUMO

Atomic force microscopy-infrared (AFM-IR) spectroscopy is a powerful new technique that can be applied to study molecular composition of cells and tissues at the nanoscale. AFM-IR maps are acquired using a single wavenumber value: they show either the absorbance plotted against a single wavenumber value or a ratio of two absorbance values. Here, we implement multivariate image analysis to generate multivariate AFM-IR maps and use this approach to resolve subcellular structural information in red blood cells infected with Plasmodium falciparum at different stages of development. This was achieved by converting the discrete spectral points into a multispectral line spectrum prior to multivariate image reconstruction. The approach was used to generate compositional maps of subcellular structures in the parasites, including the food vacuole, lipid inclusions, and the nucleus, on the basis of the intensity of hemozoin, hemoglobin, lipid, and DNA IR marker bands, respectively. Confocal Raman spectroscopy was used to validate the presence of hemozoin in the regions identified by the AFM-IR technique. The high spatial resolution of AFM-IR combined with hyperspectral modeling enables the direct detection of subcellular components, without the need for cell sectioning or immunological/biochemical staining. Multispectral-AFM-IR thus has the capacity to probe the phenotype of the malaria parasite during its intraerythrocytic development. This enables novel approaches to studying the mode of action of antimalarial drugs and the phenotypes of drug-resistant parasites, thus contributing to the development of diagnostic and control measures.


Assuntos
Eritrócitos/metabolismo , Microscopia de Força Atômica/métodos , Plasmodium falciparum/metabolismo , Espectrofotometria Infravermelho/métodos , Eritrócitos/parasitologia , Hemeproteínas/análise , Microscopia Confocal/métodos , Plasmodium falciparum/química , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/ultraestrutura , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...