Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Rev. mex. ing. bioméd ; 44(3): e1355, Sep.-Dec. 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1560175

RESUMO

Abstract: Tinnitus detection and characterization requires a carefully elaborated diagnosis mainly owing to its heterogeneity nature. The present investigation aims to find features in Electroencephalographic (EEG) signals from time and frequency domain analysis that could distinguish between healthy and tinnitus sufferers with different levels of hearing loss. For this purpose, 24 volunteers were recruited and equally divided into four groups: 1) controls, 2) slow tinnitus, 3) middle tinnitus and 4) high tinnitus. EEG signals were registered in two states, with eyes closed and opened for 60 seconds. EEG analysis was focused on two bandwidths: delta and alpha band. For time domain, the EEG features estimated were mean, standard deviation, kurtosis, maximum peak, skewness and shape. For frequency domain, the EEG features obtained were mean, skewness, power spectral density. Normality of EEG data was evaluated by the Lilliefors test, and as a result, the nonparametric technique Kruskal-Wallis H statistic to test significance was applied. Results show that EEG features are more differentiable between tinnitus sufferers and controls in frequency domain than in time domain. EEG features from tinnitus patients with high HL are significantly different from the rest of the groups in alpha frequency band activity when shape and skewness are computed.


Resumen: La detección y caracterización del acúfeno requiere un diagnóstico cuidadosamente elaborado debido principalmente a su naturaleza heterogénea. La presente investigación tiene como objetivo encontrar características en las señales electroencefalográficas (EEG) a partir del análisis del dominio del tiempo y frecuencia que podrían distinguir entre pacientes sanos y con acúfeno con diferentes niveles de pérdida auditiva. Para ello, se reclutaron 24 voluntarios y se dividieron por igual en cuatro grupos: 1) controles, 2) acúfeno bajo, 3) acúfeno medio y 4) acufeno alto. La actividad EEG se registró en reposo en dos condiciones: ojos cerrados y abiertos durante un minuto. El análisis de EEG se centró en anchos de banda delta y alfa. Para el dominio del tiempo, las características del EEG estimadas fueron la media, la desviación estándar, la curtosis, el pico máximo, la asimetría y la forma. Para el dominio de la frecuencia, las características de EEG obtenidas fueron media, asimetría, densidad espectral de potencia. La normalidad de los datos del EEG se evaluó mediante la prueba de Lilliefors y, como resultado, se aplicó la técnica no paramétrica del estadístico H de Kruskal-Wallis para probar la significación. Los resultados muestran que las características del EEG son más diferenciables entre los pacientes con acúfeno y los controles en el dominio de la frecuencia que en el dominio del tiempo. Las características del EEG de los pacientes con acúfeno con alta pérdida de audición son significativamente diferentes del resto de los grupos en la actividad de la banda de alfa cuando se calculan la forma y la asimetría.

2.
PLoS One ; 15(1): e0227613, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31951604

RESUMO

Recent studies aiming to facilitate mathematical skill development in primary school children have explored the electrophysiological characteristics associated with different levels of arithmetic achievement. The present work introduces an alternative EEG signal characterization using graph metrics and, based on such features, a classification analysis using a decision tree model. This proposal aims to identify group differences in brain connectivity networks with respect to mathematical skills in elementary school children. The methods of analysis utilized were signal-processing (EEG artifact removal, Laplacian filtering, and magnitude square coherence measurement) and the characterization (Graph metrics) and classification (Decision Tree) of EEG signals recorded during performance of a numerical comparison task. Our results suggest that the analysis of quantitative EEG frequency-band parameters can be used successfully to discriminate several levels of arithmetic achievement. Specifically, the most significant results showed an accuracy of 80.00% (α band), 78.33% (δ band), and 76.67% (θ band) in differentiating high-skilled participants from low-skilled ones, averaged-skilled subjects from all others, and averaged-skilled participants from low-skilled ones, respectively. The use of a decision tree tool during the classification stage allows the identification of several brain areas that seem to be more specialized in numerical processing.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia/métodos , Matemática , Processamento de Sinais Assistido por Computador , Logro , Criança , Gráficos por Computador , Humanos , Aprendizado de Máquina
3.
Data Brief ; 21: 1071-1075, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30450402

RESUMO

This article presents the data related to the research paper entitled "The analysis of EEG coherence reflects middle childhood differences in mathematical achievement" (González-Garrido et al., 2018). The dataset is derived from the electroencephalographic (EEG) records registered from a total of 60 8-9-years-old children with different math skill levels (High: HA, Average: AA, and Low Achievement: LA) while performing a symbolic magnitude comparison task. The average brain patterns are shown through Time-Frequency Representations (TFR) for each group, and also grand-mean amplitudes within specific EEG epochs in a 19-electrode array are provided. Making this information publicly available for further analyses could significantly contribute to a better understanding on how math achievement in children associates with cognitive processing strategies.

4.
Brain Cogn ; 124: 57-63, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29747149

RESUMO

Symbolic numerical magnitude processing is crucial to arithmetic development, and it is thought to be supported by the functional activation of several brain-interconnected structures. In this context, EEG beta oscillations have been recently associated with attention and working memory processing that underlie math achievement. Due to that EEG coherence represents a useful measure of brain functional connectivity, we aimed to contrast the EEG coherence in forty 8-to-9-year-old children with different math skill levels (High: HA, and Low achievement: LA) according to their arithmetic scores in the Fourth Edition of the Wide Range Achievement Test (WRAT-4) while performing a symbolic magnitude comparison task (i.e. determining which of two numbers is numerically larger). The analysis showed significantly greater coherence over the right hemisphere in the two groups, but with a distinctive connectivity pattern. Whereas functional connectivity in the HA group was predominant in parietal areas, especially involving beta frequencies, the LA group showed more extensive frontoparietal relationships, with higher participation of delta, theta and alpha band frequencies, along with a distinct time-frequency domain expression. The results seem to reflect that lower math achievements in children mainly associate with cognitive processing steps beyond stimulus encoding, along with the need of further attentional resources and cognitive control than their peers, suggesting a lower degree of numerical processing automation.


Assuntos
Logro , Sincronização de Fases em Eletroencefalografia/fisiologia , Matemática , Atenção/fisiologia , Encéfalo/fisiologia , Mapeamento Encefálico , Criança , Correlação de Dados , Feminino , Humanos , Masculino , Memória de Curto Prazo/fisiologia , Rede Nervosa/fisiologia , Resolução de Problemas/fisiologia
5.
Front Hum Neurosci ; 11: 28, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28220063

RESUMO

Early auditory deprivation has serious neurodevelopmental and cognitive repercussions largely derived from impoverished and delayed language acquisition. These conditions may be associated with early changes in brain connectivity. Vibrotactile stimulation is a sensory substitution method that allows perception and discrimination of sound, and even speech. To clarify the efficacy of this approach, a vibrotactile oddball task with 700 and 900 Hz pure-tones as stimuli [counterbalanced as target (T: 20% of the total) and non-target (NT: 80%)] with simultaneous EEG recording was performed by 14 profoundly deaf and 14 normal-hearing (NH) subjects, before and after a short training period (five 1-h sessions; in 2.5-3 weeks). A small device worn on the right index finger delivered sound-wave stimuli. The training included discrimination of pure tone frequency and duration, and more complex natural sounds. A significant P300 amplitude increase and behavioral improvement was observed in both deaf and normal subjects, with no between group differences. However, a P3 with larger scalp distribution over parietal cortical areas and lateralized to the right was observed in the profoundly deaf. A graph theory analysis showed that brief training significantly increased fronto-central brain connectivity in deaf subjects, but not in NH subjects. Together, ERP tools and graph methods depicted the different functional brain dynamic in deaf and NH individuals, underlying the temporary engagement of the cognitive resources demanded by the task. Our findings showed that the index-fingertip somatosensory mechanoreceptors can discriminate sounds. Further studies are necessary to clarify brain connectivity dynamics associated with the performance of vibrotactile language-related discrimination tasks and the effect of lengthier training programs.

6.
Neuroreport ; 28(3): 174-178, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-27984540

RESUMO

Children with mathematical difficulties usually have an impaired ability to process symbolic representations. Functional MRI methods have suggested that early frontoparietal connectivity can predict mathematic achievements; however, the study of brain connectivity during numerical processing remains unexplored. With the aim of evaluating this in children with different math proficiencies, we selected a sample of 40 children divided into two groups [high achievement (HA) and low achievement (LA)] according to their arithmetic scores in the Wide Range Achievement Test, 4th ed.. Participants performed a symbolic magnitude comparison task (i.e. determining which of two numbers is numerically larger), with simultaneous electrophysiological recording. Partial directed coherence and graph theory methods were used to estimate and depict frontoparietal connectivity in both groups. The behavioral measures showed that children with LA performed significantly slower and less accurately than their peers in the HA group. Significantly higher frontocentral connectivity was found in LA compared with HA; however, when the connectivity analysis was restricted to parietal locations, no relevant group differences were observed. These findings seem to support the notion that LA children require greater memory and attentional efforts to meet task demands, probably affecting early stages of symbolic comparison.


Assuntos
Logro , Mapeamento Encefálico , Encéfalo/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Matemática , Criança , Feminino , Humanos , Masculino , Tempo de Reação/fisiologia
7.
Neuroreport ; 27(1): 1-5, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26551923

RESUMO

Ictal and interictal epileptiform discharges affect brain functional dynamics, but the issue of how they occur is still under debate. The present study evaluated the brain electrical activity that underlies epileptic seizures by focusing analysis on four electroencephalographic time stages around seizure onset. The dynamics of the functional organization of the brain regions at rest, and then immediately before, during, and after, epileptic seizures in a group of five patients diagnosed with intractable temporal epilepsy was examined. The analysis is based on the probability of connections between different brain regions as determined by partial directed coherence. A probability-based graph is constructed for each stage and then the dynamics of reorganization is described using invariant measures on the basis of the graphs obtained. The functional reorganization of brain connectivity is illustrated for each time period, reflecting their temporal variations. The graph method applied proved to be useful in depicting temporal variations in functional brain connectivity because of ictal disruptions in temporal epilepsy, thus providing the possibility of further evaluation of these changes in individual cases to support medical decisions.


Assuntos
Encéfalo/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Plasticidade Neuronal , Adolescente , Adulto , Conectoma , Eletroencefalografia , Humanos , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Convulsões/fisiopatologia , Processamento de Sinais Assistido por Computador , Fatores de Tempo , Gravação em Vídeo , Adulto Jovem
8.
Math Biosci ; 225(1): 36-43, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20109473

RESUMO

The kidney is one of the most complicated organs in terms of structure and physiology, in part because it is highly vascularized. The renal vascular development occurs through two mechanisms that sometimes overlap: vasculogenesis and angiogenesis. Here, we consider angiogenesis to model the renal arterial tree with the two processes of vascular angiogenesis: sprouting and splitting. We recognize the vessels are not tubes with ends that get glued but physiological factors are relevant into the vascular development. Our contribution integrates the graph theory and physiological information to derive a quantitative model for the vascular tree in the sense that the vertices and edges represent, respectively, a branching point and a vessel. From such a premise, development of the arterial vascular tree of the kidney is mathematically expressed, including physiological processes as the effect of the vascular endothelial growth factor (VEGF) on the vessel length. A definition of the graph is used to visualize the topology of vascular tree in kidney providing physiological information into the edges. Thus, renal arterial branching is modeled as a graph where edges are labeled and oriented.


Assuntos
Rim/irrigação sanguínea , Modelos Anatômicos , Artéria Renal/anatomia & histologia , Fractais , Humanos , Neovascularização Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...