Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(11): e0109523, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37882527

RESUMO

IMPORTANCE: Persistence of V. cholerae in the aquatic environment contributes to the fatal diarrheal disease cholera, which remains a global health burden. In the environment, bacteria face predation pressure by heterotrophic protists such as the free-living amoeba A. castellanii. This study explores how a mutant of V. cholerae adapts to acquire essential nutrients and survive predation. Here, we observed that up-regulation of iron acquisition genes and genes regulating resistance to oxidative stress enhances pathogen fitness. Our data show that V. cholerae can defend predation to overcome nutrient limitation and oxidative stress, resulting in an enhanced survival inside the protozoan hosts.


Assuntos
Amoeba , Cólera , Vibrio cholerae , Animais , Vibrio cholerae/genética , Comportamento Predatório , Cólera/microbiologia , Ferro
2.
FEMS Microbiol Rev ; 47(4)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37458768

RESUMO

Protozoa are eukaryotic organisms that play a crucial role in nutrient cycling and maintaining balance in the food web. Predation, symbiosis and parasitism are three types of interactions between protozoa and bacteria. However, not all bacterial species are equally susceptible to protozoan predation as many are capable of defending against predation in numerous ways and may even establish either a symbiotic or parasitic life-style. Biofilm formation is one such mechanism by which bacteria can survive predation. Structural and chemical components of biofilms enhance resistance to predation compared to their planktonic counterparts. Predation on biofilms gives rise to phenotypic and genetic heterogeneity in prey that leads to trade-offs in virulence in other eukaryotes. Recent advances, using molecular and genomics techniques, allow us to generate new information about the interactions of protozoa and biofilms of prey bacteria. This review presents the current state of the field on impacts of protozoan predation on biofilms. We provide an overview of newly gathered insights into (i) molecular mechanisms of predation resistance in biofilms, (ii) phenotypic and genetic diversification of prey bacteria, and (iii) evolution of virulence as a consequence of protozoan predation on biofilms.


Assuntos
Eucariotos , Comportamento Predatório , Animais , Virulência , Bactérias , Biofilmes
3.
Adv Exp Med Biol ; 1404: 99-126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36792873

RESUMO

Vibrio species are natural inhabitants of aquatic environments and have complex interactions with the environment that drive the evolution of traits contributing to their survival. These traits may also contribute to their ability to invade or colonize animal and human hosts. In this review, we attempt to summarize the relationships of Vibrio spp. with other organisms in the aquatic environment and discuss how these interactions could potentially impact colonization of animal and human hosts.


Assuntos
Vibrio cholerae , Vibrio , Animais , Humanos , Vibrio/genética
4.
ISME J ; 16(8): 1993-2001, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35577916

RESUMO

Vibrio cholerae, the bacterial pathogen responsible for the diarrheal disease cholera, resides in the aquatic environment between outbreaks. For bacteria, genetic variation by lateral gene transfer (LGT) is important for survival and adaptation. In the aquatic environment, V. cholerae is predominantly found in biofilms associated with chitinous organisms or with chitin "rain". Chitin induces competency in V. cholerae, which can lead to LGT. In the environment, V. cholerae is also subjected to predation pressure by protist. Here we investigated whether protozoal predation affected LGT using the integron as a model. Integrons facilitate the integration of mobile DNA (gene cassettes) into the bacterial chromosome. We report that protozoal predation enhances transformation of a gene cassette by as much as 405-fold. We show that oxidative radicals produced in the protozoal phagosome induces the universal SOS response, which in turn upregulates the integron-integrase, the recombinase that facilitates cassette integration. Additionally, we show that during predation, V. cholerae requires the type VI secretion system to acquire the gene cassette from Escherichia coli. These results show that protozoal predation enhances LGT thus producing genetic variants that may have increased capacity to survive grazing. Additionally, the conditions in the food vacuole may make it a "hot spot" for LGT by accumulating diverse bacteria and inducing the SOS response helping drive genetic diversification and evolution.


Assuntos
Vibrio cholerae , Bactérias/genética , Quitina , DNA , Escherichia coli/genética , Fagossomos , Vacúolos , Vibrio cholerae/genética
5.
Appl Environ Microbiol ; 88(2): e0166521, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34731052

RESUMO

Vibrio vulnificus is an opportunistic human pathogen and autochthonous inhabitant of coastal marine environments, where the bacterium is under constant predation by heterotrophic protists or protozoans. As a result of this selection pressure, genetic variants with antipredation mechanisms are selected for and persist in the environment. Such natural variants may also be pathogenic to animal or human hosts, making it important to understand these defense mechanisms. To identify antipredator strategies, 13 V. vulnificus strains of different genotypes isolated from diverse environments were exposed to predation by the ciliated protozoan Tetrahymena pyriformis, and only strain ENV1 was resistant to predation. Further investigation of the cell-free supernatant showed that ENV1 acidifies the environment by the excretion of organic acids, which are toxic to T. pyriformis. As this predation resistance was dependent on the availability of iron, transcriptomes of V. vulnificus in iron-replete and iron-deplete conditions were compared. This analysis revealed that ENV1 ferments pyruvate and the resultant acetyl-CoA leads to acetate synthesis under aerobic conditions, a hallmark of overflow metabolism. The anaerobic respiration global regulator arcA was upregulated when iron was available. An ΔarcA deletion mutant of ENV1 accumulated less acetate and, importantly, was sensitive to grazing by T. pyriformis. Based on the transcriptome response and quantification of metabolites, we conclude that ENV1 has adapted to overflow metabolism and has lost a control switch that shifts metabolism from acetate excretion to acetate assimilation, enabling it to excrete acetate continuously. We show that overflow metabolism and the acetate switch contribute to prey-predator interactions. IMPORTANCE Bacteria in the environment, including Vibrio spp., interact with protozoan predators. To defend against predation, bacteria evolve antipredator mechanisms ranging from changing morphology, biofilm formation, and secretion of toxins or virulence factors. Some of these adaptations may result in strains that are pathogenic to humans. Therefore, it is important to study predator defense strategies of environmental bacteria. V. vulnificus thrives in coastal waters and infects humans. Very little is known about the defense mechanisms V. vulnificus expresses against predation. Here, we show that a V. vulnificus strain (ENV1) has rewired the central carbon metabolism, enabling the production of excess organic acid that is toxic to the protozoan predator T. pyriformis. This is a previously unknown mechanism of predation defense that protects against protozoan predators.


Assuntos
Tetrahymena pyriformis , Vibrio vulnificus , Acetatos , Animais , Genótipo , Comportamento Predatório
6.
ISME J ; 16(3): 856-867, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34654895

RESUMO

Predation by heterotrophic protists drives the emergence of adaptive traits in bacteria, and often these traits lead to altered interactions with hosts and persistence in the environment. Here we studied adaptation of the cholera pathogen, Vibrio cholerae during long-term co-incubation with the protist host, Acanthamoeba castellanii. We determined phenotypic and genotypic changes associated with long-term intra-amoebal host adaptation and how this impacts pathogen survival and fitness. We showed that adaptation to the amoeba host leads to temporal changes in multiple phenotypic traits in V. cholerae that facilitate increased survival and competitive fitness in amoeba. Genome sequencing and mutational analysis revealed that these altered lifestyles were linked to non-synonymous mutations in conserved regions of the flagellar transcriptional regulator, flrA. Additionally, the mutations resulted in enhanced colonisation in zebrafish, establishing a link between adaptation of V. cholerae to amoeba predation and enhanced environmental persistence. Our results show that pressure imposed by amoeba on V. cholerae selects for flrA mutations that serves as a key driver for adaptation. Importantly, this study provides evidence that adaptive traits that evolve in pathogens in response to environmental predatory pressure impact the colonisation of eukaryotic organisms by these pathogens.


Assuntos
Amoeba , Cólera , Vibrio cholerae , Animais , Cólera/microbiologia , Vibrio cholerae/genética , Virulência , Peixe-Zebra
7.
Front Microbiol ; 11: 17, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32038597

RESUMO

In the aquatic environment, Vibrio spp. interact with many living organisms that can serve as a replication niche, including heterotrophic protists, or protozoa. Protozoa engulf bacteria and package them into phagosomes where the cells are exposed to low pH, antimicrobial peptides, reactive oxygen/nitrogen species, proteolytic enzymes, and low concentrations of essential metal ions such as iron. However, some bacteria can resist these digestive processes. For example, Vibrio cholerae and Vibrio harveyi can resist intracellular digestion. In order to survive intracellularly, bacteria have acquired and/or developed specific factors that help them to resist the unfavorable conditions encountered inside of the phagosomes. Many of these intra-phagosomal factors used to kill and digest bacteria are highly conserved between eukaryotic cells and thus are also expressed by the innate immune system in the gastrointestinal tract as the first line of defense against bacterial pathogens. Since pathogenic bacteria have been shown to be hypervirulent after they have passed through protozoa, the resistance to digestion by protist hosts in their natural environment plays a key role in enhancing the infectious potential of pathogenic Vibrio spp. This review will investigate the current knowledge in interactions of bacteria with protozoa and human host to better understand the mechanisms used by both protozoa and human hosts to kill bacteria and the bacterial response to them.

8.
Nat Microbiol ; 4(12): 2466-2474, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31570868

RESUMO

Vibrio cholerae interacts with many organisms in the environment, including heterotrophic protists (protozoa). Several species of protozoa have been reported to release undigested bacteria in expelled food vacuoles (EFVs) when feeding on some pathogens. While the production of EFVs has been reported, their biological role as a vector for the transmission of pathogens remains unknown. Here we report that ciliated protozoa release EFVs containing V. cholerae. The EFVs are stable, the cells inside them are protected from multiple stresses, and large numbers of cells escape when incubated at 37 °C or in the presence of nutrients. We show that OmpU, a major outer membrane protein positively regulated by ToxR, has a role in the production of EFVs. Notably, cells released from EFVs have growth and colonization advantages over planktonic cells both in vitro and in vivo. Our results suggest that EFVs facilitate V. cholerae survival in the environment, enhancing their infectious potential and may contribute to the dissemination of epidemic V. cholerae strains. These results improve our understanding of the mechanisms of persistence and the modes of transmission of V. cholerae and may further apply to other opportunistic pathogens that have been shown to be released by protists in EFVs.


Assuntos
Cólera/microbiologia , Vetores de Doenças , Interações Hospedeiro-Patógeno/fisiologia , Tetrahymena pyriformis/microbiologia , Vacúolos/microbiologia , Vibrio cholerae/crescimento & desenvolvimento , Vibrio cholerae/metabolismo , Adesinas Bacterianas/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cólera/parasitologia , Cólera/transmissão , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Temperatura , Fatores de Transcrição , Vacúolos/parasitologia , Vibrio cholerae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...