Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(9): 096802, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29547315

RESUMO

As the Fermi level and band structure of two-dimensional materials are readily tunable, they constitute an ideal platform for exploring the Lifshitz transition, a change in the topology of a material's Fermi surface. Using tetralayer graphene that host two intersecting massive Dirac bands, we demonstrate multiple Lifshitz transitions and multiband transport, which manifest as a nonmonotonic dependence of conductivity on the charge density n and out-of-plane electric field D, anomalous quantum Hall sequences and Landau level crossings that evolve with n, D, and B.

2.
Sci Adv ; 3(6): e1603179, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28630916

RESUMO

Quantum wells (QWs) constitute one of the most important classes of devices in the study of two-dimensional (2D) systems. In a double-layer QW, the additional "which-layer" degree of freedom gives rise to celebrated phenomena, such as Coulomb drag, Hall drag, and exciton condensation. We demonstrate facile formation of wide QWs in few-layer black phosphorus devices that host double layers of charge carriers. In contrast to traditional QWs, each 2D layer is ambipolar and can be tuned into n-doped, p-doped, or intrinsic regimes. Fully spin-polarized quantum Hall states are observed on each layer, with an enhanced Landé g factor that is attributed to exchange interactions. Our work opens the door for using 2D semiconductors as ambipolar single, double, or wide QWs with unusual properties, such as high anisotropy.

3.
Phys Rev Lett ; 116(5): 056601, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26894724

RESUMO

Owing to the spin, valley, and orbital symmetries, the lowest Landau level in bilayer graphene exhibits multicomponent quantum Hall ferromagnetism. Using transport spectroscopy, we investigate the energy gaps of integer and fractional quantum Hall (QH) states in bilayer graphene with controlled layer polarization. The state at filling factor ν=1 has two distinct phases: a layer polarized state that has a larger energy gap and is stabilized by high electric field, and a hitherto unobserved interlayer coherent state with a smaller gap that is stabilized by large magnetic field. In contrast, the ν=2/3 quantum Hall state and a feature at ν=1/2 are only resolved at finite electric field and large magnetic field. These results underscore the importance of controlling layer polarization in understanding the competing symmetries in the unusual QH system of BLG.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...