Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37238075

RESUMO

As humans expand their territories across more and more regions of the planet, activities such as deforestation, urbanization, tourism, wildlife exploitation, and climate change can have drastic consequences for animal movements and animal-human interactions. These events, especially climate change, can also affect the arthropod vectors that are associated with the animals in these scenarios. As the COVID-19 pandemic and other various significant outbreaks throughout the centuries have demonstrated, when animal patterns and human interactions change, so does the exposure of humans to zoonotic pathogens potentially carried by wildlife. With approximately 60% of emerging human pathogens and around 75% of all emerging infectious diseases being categorized as zoonotic, it is of great importance to examine the impact of human activities on the prevalence and transmission of these infectious agents. A better understanding of the impact of human-related factors on zoonotic disease transmission and prevalence can help drive the preventative measures and containment policies necessary to improve public health.

2.
J Fungi (Basel) ; 9(3)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36983516

RESUMO

Although the human bacteriome and virome have gained a great deal of attention over the years, the human mycobiome has been far more neglected despite having significant value and implications in human health. In women, mycobiome profiles in breastmilk, vaginal regions, the gut, skin, and the oral cavity can provide insight into women's health, diseases, and microbiome dysbiosis. Analyses of mycobiome composition under factors, such as health, age, diet, weight, and drug exposure (including antibiotic therapies), help to elucidate the various roles of women's mycobiome in homeostasis, microbiome interactions (synergistic and antagonistic), and health. This review summarizes the most recent updates to mycobiome knowledge in these critical areas.

3.
Microorganisms ; 10(9)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36144417

RESUMO

Great emphasis has been placed on bacterial microbiomes in human and animal systems. In recent years, advances in metagenomics have allowed for the detection and characterization of more and more native viral particles also residing in these organisms. The digestive tracts of animals and humans-from the oral cavity, to the gut, to fecal excretions-have become one such area of interest. Next-generation sequencing and bioinformatic analyses have uncovered vast phylogenetic virome diversity in companion animals, such as dogs and cats, as well as farm animals and wildlife such as bats. Zoonotic and arthropod-borne illnesses remain major causes of worldwide outbreaks, as demonstrated by the devastating COVID-19 pandemic. This highlights the increasing need to identify and study animal viromes to prevent such disastrous cross-species transmission outbreaks in the coming years. Novel viruses have been uncovered in the viromes of multiple organisms, including birds, bats, cats, and dogs. Although the exact consequences for public health have not yet become clear, many analyses have revealed viromes dominated by RNA viruses, which can be the most problematic to human health, as these genomes are known for their high mutation rates and immune system evasion capabilities. Furthermore, in the wake of worldwide disruption from the COVID-19 pandemic, it is evident that proper surveillance of viral biodiversity is crucial. For instance, gut viral metagenomic analysis in dogs has shown close relationships between the highly abundant canine coronavirus and human coronavirus strains 229E and NL63. Future studies and vigilance could potentially save many lives.

4.
Pathogens ; 12(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36678393

RESUMO

Biofilms are large aggregates of various species of bacteria or other microorganisms tightly attached to surfaces through an intricate extracellular matrix. These complex microbial communities present quite the challenge in the food processing industry, as conditions such as raw meats and diverse food product content in contact with workers, drains, machinery, and ventilation systems, make for prime circumstances for contamination. Adding to the challenge is the highly resistant nature of these biofilm growths and the need to keep in mind that any antimicrobials utilized in these situations risk health implications with human consumption of the products that are being processed in these locations. For that reason, the ideal means of sanitizing areas of foodborne biofilms would be natural means. Herein, we review a series of innovative natural methods of targeting foodborne biofilms, including bacteriocins, bacteriophages, fungi, phytochemicals, plant extracts, essential oils, gaseous and aqueous control, photocatalysis, enzymatic treatments, and ultrasound mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...