Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 122(13): 11604-11674, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35653785

RESUMO

Chitin, a fascinating biopolymer found in living organisms, fulfills current demands of availability, sustainability, biocompatibility, biodegradability, functionality, and renewability. A feature of chitin is its ability to structure into hierarchical assemblies, spanning the nano- and macroscales, imparting toughness and resistance (chemical, biological, among others) to multicomponent materials as well as adding adaptability, tunability, and versatility. Retaining the inherent structural characteristics of chitin and its colloidal features in dispersed media has been central to its use, considering it as a building block for the construction of emerging materials. Top-down chitin designs have been reported and differentiate from the traditional molecular-level, bottom-up synthesis and assembly for material development. Such topics are the focus of this Review, which also covers the origins and biological characteristics of chitin and their influence on the morphological and physical-chemical properties. We discuss recent achievements in the isolation, deconstruction, and fractionation of chitin nanostructures of varying axial aspects (nanofibrils and nanorods) along with methods for their modification and assembly into functional materials. We highlight the role of nanochitin in its native architecture and as a component of materials subjected to multiscale interactions, leading to highly dynamic and functional structures. We introduce the most recent advances in the applications of nanochitin-derived materials and industrialization efforts, following green manufacturing principles. Finally, we offer a critical perspective about the adoption of nanochitin in the context of advanced, sustainable materials.


Assuntos
Quitina , Nanoestruturas , Biopolímeros , Quitina/química , Nanoestruturas/química
2.
Carbohydr Polym ; 134: 598-608, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26428163

RESUMO

The preparation of alginate-chitosan fibers, through wet spinning technique, as well as the study of their properties as a function of chitosan's molecular weight and retention time in the coagulation bath, is presented and discussed in this work. Scanning electron microscopy (SEM) revealed that the fibers presented irregular and rough surfaces, with a grooved and heavily striated morphology distributed throughout the structure. Dynamic mechanical analysis (DMA) showed that, with the exception of elongation at break, the incorporation of chitosan into the fibers improved their tensile properties. The in vitro release profile of sulfathiazole as a function of chitosan's molecular weight indicated that the fibers are viable carriers of drugs. Kinetic models showed that the release of the model drug is first-order, and the release mechanism is governed by the Korsmeyer-Peppas model. Likewise, fibers loaded with sulfathiazole showed excellent inhibition of Escherichia coli growth after an incubation time of 24h at 37 °C.


Assuntos
Alginatos/química , Quitosana/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Cinética , Fenômenos Mecânicos , Peso Molecular , Sulfatiazol , Sulfatiazóis/química , Sulfatiazóis/farmacologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...