Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 2): 131855, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38679259

RESUMO

In this work, chitin (CT) was isolated from shrimp shell waste (SSW) and was then phosphorylated using diammonium hydrogen phosphate (DAP) as a phosphorylating agent in the presence of urea. The prepared samples were characterized using Scanning Electron Microscopy (SEM) and EDX-element mapping, Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA/DTG), conductometric titration, Degree of Substitution (DS) and contact angle measurements. The results of characterization techniques reveal the successful extraction and phosphorylation of chitin. The charge content of the phosphorylated chitin (P-CT) was 1.510 mmol·kg-1, the degree of substitution of phosphorus groups grafted on the CT surface achieved the value of 0.33. The adsorption mechanisms appeared to involve electrostatic attachment, specific adsorption (CdO or hydroxyl binding), and ion exchange. Regarding the adsorption of Cd2+, the effect of the adsorbent mass, initial concentration of Cd2+, contact time, pH, and temperature were studied in batch experiments, and optimum values for each parameter were identified. The experimental results revealed that P-CT enhanced the Cd2+ removal capacity by 17.5 %. The kinetic analyses favored the pseudo-second-order model over the pseudo-first-order model for describing the adsorption process accurately. Langmuir model aptly represented the adsorption isotherms, suggesting unimolecular layer adsorption with a maximum capacity of 62.71 mg·g-1 under optimal conditions of 30 °C, 120 min, pH 8, and a P-CT dose of 3 g·L-1. Regeneration experiments evidenced that P-CT can be used for 6 cycles without significant removal capacity loss. Consequently, P-CT presents an efficient and cost-effective potential biosorbent for Cd2+ removal in wastewater treatment applications.


Assuntos
Cádmio , Quitina , Quitina/química , Quitina/isolamento & purificação , Cádmio/química , Cádmio/isolamento & purificação , Animais , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Exoesqueleto/química , Fosforilação , Concentração de Íons de Hidrogênio , Cinética , Temperatura , Purificação da Água/métodos , Resíduos , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Int J Biol Macromol ; 242(Pt 2): 125011, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37217042

RESUMO

This study aims to investigate the mechanical behavior of alginate-based simple and alginate@clay-based hybrid capsules under uniaxial compression using a Brookfield force machine. The effect of clay type and content on Young's modulus and nominal rupture stress of the capsules was investigated and characterized using Scanning Electron Microscopy (SEM), and Fourier Transform Infrared Spectroscopy (ATR-FTIR). Results showed that clay content improves the mechanical properties depending on its type. Montmorillonite and laponite clays showed optimal results at 3 wt% content, with a gain of 63.2 % and 70.34 % on Young's modulus, and a gain of 92.43 % and 108.66 % on nominal rupture stress, respectively, while kaolinite clay showed optimal results at 1.5 wt% content with an increase of 77.21 % on Young's modulus and 88.34 % on nominal rupture stress. However, exceeding the optimal content led to decrease the elasticity and rigidity due to the incomplete dispersion of clay particles in the hydrogel network. The theoretical modeling using Boltzmann superposition principle revealed that the elastic modulus was in good agreement with experimental values. Overall, this research provides insights into the mechanical behavior of alginate@clay-based capsules, which could have potential applications in drug delivery systems and tissue engineering.


Assuntos
Alginatos , Fenômenos Mecânicos , Argila , Alginatos/química , Cápsulas , Elasticidade
3.
Polymers (Basel) ; 15(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36850108

RESUMO

The foremost objective of this work is to assess the microcapsules composition (polymer-based and polymer/clay-based) effect, on the release of rosemary essential oil into w/o medium and evaluate their antioxidant activity. Calcium alginate (CA) and calcium alginate/montmorillonite hybrid (CA-MTN) microcapsules were developed following an ionotropic crosslinking gelation and were used as host materials for the encapsulation of rosemary essential oil. The unloaded/loaded CA and hybrid CA-MTN microcapsules were characterized by Fourier transform infra-red (FT-ATR) spectroscopy, thermal analysis (TGA), scanning electron microscopy (SEM) and DPPH assay. The evaluation of the microcapsule's physicochemical properties has shown that the clay filling with montmorillonite improved the microcapsule's properties. The encapsulation efficiency improved significantly in hybrid CA-MTN microcapsules and exhibited higher values ranging from 81 for CA to 83% for hybrid CA-MTN and a loading capacity of 71 for CA and 73% for hybrid CA-MTN, owing to the large adsorption capacity of the sodic clay. Moreover, the hybrid CA-MTN microcapsules showed a time-extended release of rosemary essential oil compared to CA microcapsules. Finally, the DPPH assay displayed a higher reduction of free radicals in hybrid CA-MNT-REO (12.8%) than CA-REO (10%) loaded microcapsules. These results proved that the clay-alginate combination provides microcapsules with enhanced properties compared to the polymer-based microcapsules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...