Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 88(5): 3132-3147, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36779866

RESUMO

Indium-catalyzed, solvent-enabled regioselective C6- or N1-alkylations of 2,3-disubstituted indoles with para-quinone methides are developed under mild conditions. Notably, highly selective and switchable alkylations were selectively achieved by adjusting the reaction conditions. Moreover, scalability and further transformations of the alkylation products are demonstrated, and this operationally simple methodology is amenable to the late-stage C6-functionalization of the indomethacin drug. The reaction pathways were explained with the support of experimental and density functional theory studies.

2.
Chemphyschem ; 24(9): e202200886, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36692854

RESUMO

A computational study of the radical-mediated chemoselective difunctionalization of the tertiary alcohol substituted aliphatic alkenes is carried out employing density functional theory (DFT) and high-level coupled-cluster methods, such as coupled-cluster singles and doubles with perturbative triples [DLPNO-CCSD(T)]. Our results indicate that the cyclic vinyl radical plays an important role in the progression of the reactions. Our computations demonstrated that the chemoselective difunctionalization of unactivated alkenes with radical-mediated remote functional group migration is suitable for the 5- and 6-exo-dig cyclization, as opposite to 3- and 4-exo-dig cyclization suffering from cyclic intermediate with high energy. Our results show that the migration of nitrile group is more preferable than that of alkynyl group for the molecules including both cyano group and alkynyl group. For the 5- and 6-exo-dig cyclization, the rate-determining step is the homolysis of the C-C σ-bond in the cyclic intermediate, which results in the hydroxyl alkyl radical.

3.
Beilstein J Org Chem ; 18: 77-85, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35047084

RESUMO

The first synthesis of 2-amino-3,4-dihydroxycyclooctane-1-carboxylic acid, methyl 6-hydroxy-9-oxo-8-oxabicyclo[5.2.1]decan-10-yl)carbamate, and 10-amino-6-hydroxy-8-oxabicyclo[5.2.1]decan-9-one starting from cis-9-azabicyclo[6.2.0]dec-6-en-10-one is described. cis-9-Azabicyclo[6.2.0]dec-6-en-10-one was transformed into the corresponding amino ester and its protected amine. Oxidation of the double bond in the N-Boc-protected methyl 2-aminocyclooct-3-ene-1-carboxylate then delivered the targeted amino acid and its derivatives. Density-functional theory (DFT) computations were used to explain the reaction mechanism for the ring opening of the epoxide and the formation of five-membered lactones. The stereochemistry of the synthesized compounds was determined by 1D and 2D NMR spectroscopy. The configuration of methyl 6-hydroxy-9-oxo-8-oxabicyclo[5.2.1]decan-10-yl)carbamate was confirmed by X-ray diffraction.

4.
Org Biomol Chem ; 19(43): 9483-9490, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709277

RESUMO

A computational study of 2,2-azobis(isobutyronitrile) (AIBN)-initiated aerobic oxidative cleavage of alkenes is carried out employing density functional theory (DFT) and high-level coupled-cluster methods, such as coupled-cluster singles and doubles with perturbative triples [CCSD(T)]. Our computations show that the barriers for the formation of dioxetane derivatives suggested by Xu and co-workers (J. Org. Chem., 2014, 79, 7220-7225) for the reaction mechanism of aerobic oxidative cleavage of alkenes are computed to be higher than 65 kcal mol-1. This barrier is relatively high under the reaction conditions. Our results for the Xu mechanism indicate that the reaction does not proceed via the formation of a dioxetane ring under the reaction conditions. Our results demonstrate that the reaction of aerobic oxidative cleavage of geminal alkenes in the presence of AIBN is initiated by the peroxyl radical 9, contrary to the isobutyronitrile radical 2. Our results show that the 2-(2-hydroxyl-1,1-diarylethoxy)-2-methylpropanenitrile radical (15) does not appear throughout the reaction scheme and the reaction progresses over the 2-(2-hydroxyl-2,2-diarylethoxy)-2-methylpropanenitrile radical (13) rather than the 2-(2-hydroxyl-1,1-diarylethoxy)-2-methylpropanenitrile radical (15). Our results are in agreement with the experimental results for the aerobic oxidative cleavage of the geminal disubstituted alkenes. Our results also demonstrate that the epoxide derivatives can be formed as an intermediate under the reaction conditions. This reaction is not applicable for pyridine derivatives due to the conversion of vinylpyridine derivatives to N-oxide derivatives.

5.
Arch Pharm (Weinheim) ; 354(8): e2100113, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34080709

RESUMO

A series of some naphthol derivatives 4a-f, 5a,f, 6a, and 7a,b (six novel ones: 4c,d, 5a, 6a, 7a,b) bearing F, Cl, Br, OMe, and dioxole substituents at different positions of the aromatic rings was designed, synthesized, and characterized. The naphthol derivatives were synthesized in three steps, namely the addition reaction of furan via Diels-Alder cycloaddition reaction, copper(II) trifluoromethanesulfonate (Cu(OTf)2 )-catalyzed aromatization reaction, and the bromination reaction, respectively. The structures of the newly obtained compounds (4c,d, 5a, 6a, 7a,b) were characterized by spectroscopic techniques. In addition, some biological activity studies were investigated under in vitro conditions. Inhibition studies of these compounds were performed on human carbonic anhydrase (hCA) I and II isoenzymes purified from human erythrocytes as a biological evaluation. Moreover, their potential antioxidant and antiradical activities were studied by analytical methods like ABTS•+ and DPPH• scavenging, and it was determined that some molecules showed good activity. Also, inhibition of acetylcholinesterase (AChE), which is a marker of many degenerative neurological diseases, was tested and the results were discussed. Excellent enzyme inhibition results were recorded for most of the molecules. These 1-naphthol derivatives were found as effective inhibitors for hCA I, hCA II, and AChE with K i values ranging from 0.034 ± 0.54 to 0.724 ± 0.18 µM for hCA I, 0.172 ± 0.02 to 0.562 ± 0.21 µM for hCA II, and 0.096 ± 0.01 to 0.177 ± 0.02 µM for AChE.


Assuntos
Antioxidantes/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Colinesterase/farmacologia , Naftóis/farmacologia , Acetilcolinesterase/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Antioxidantes/síntese química , Antioxidantes/química , Anidrase Carbônica I/antagonistas & inibidores , Anidrase Carbônica II/antagonistas & inibidores , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Eritrócitos/enzimologia , Humanos , Naftóis/síntese química , Naftóis/química , Relação Estrutura-Atividade
6.
RSC Adv ; 11(30): 18246-18251, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35480900

RESUMO

A computational study of metal-free cyanomethylation and cyclization of aryl alkynoates with acetonitrile is carried out employing density functional theory and high-level coupled-cluster methods, such as coupled-cluster singles and doubles with perturbative triples [CCSD(T)]. Our results indicate that the reaction of aryl alkynoates with acetonitrile in the presence of tert-butyl peroxybenzoate (TBPB) under metal-free conditions tends to proceed through cyanomethylation, spirocyclization and ester migration of the kinetically favoured coumarin derivatives. 1,2-Ester migration in the spiro-radical intermediate 10 does not proceed via the formation of the carboxyl radical 11 suggested by Sun and co-workers. Our results also demonstrate that the t-butoxy radical is substantially responsible the formation of the cyanomethyl radical by the abstraction of a hydrogen atom from acetonitrile.

7.
J Org Chem ; 85(15): 10136-10142, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32672962

RESUMO

A computational study of N-hydroxyphthalimide-catalyzed aerobic oxidative cleavage of alkenes is carried out employing density functional theory and high-level coupled-cluster methods, such as coupled-cluster singles and doubles with perturbative triples [CCSD(T)]. Our results demonstrate that the reaction proceeds through the alkoxyl radicals, as opposed to the mechanism suggested by Jiao and co-workers (Org. Lett. 2012, 14, 4158-4161), in which the reaction proceeds via formation of the dioxetane ring. The barriers for the formation of dioxetane derivatives are computed to be higher than 50 kcal mol-1, while the barriers for the formation of alkoxyl radicals are as low as 13 kcal mol-1. Our results also demonstrate that epoxide derivatives can be formed as intermediates or byproducts under the reaction conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...