Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38932107

RESUMO

Rotaviruses (RVs) are 11-segmented, double-stranded (ds) RNA viruses and important causes of acute gastroenteritis in humans and other animal species. Early RV particle assembly is a multi-step process that includes the assortment, packaging and replication of the 11 genome segments in close connection with capsid morphogenesis. This process occurs inside virally induced, cytosolic, membrane-less organelles called viroplasms. While many viral and cellular proteins play roles during early RV assembly, the octameric nonstructural protein 2 (NSP2) has emerged as a master orchestrator of this key stage of the viral replication cycle. NSP2 is critical for viroplasm biogenesis as well as for the selective RNA-RNA interactions that underpin the assortment of 11 viral genome segments. Moreover, NSP2's associated enzymatic activities might serve to maintain nucleotide pools for use during viral genome replication, a process that is concurrent with early particle assembly. The goal of this review article is to summarize the available data about the structures, functions and interactions of RV NSP2 while also drawing attention to important unanswered questions in the field.


Assuntos
Genoma Viral , Rotavirus , Proteínas não Estruturais Virais , Montagem de Vírus , Replicação Viral , Rotavirus/genética , Rotavirus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Humanos , Animais , RNA Viral/genética , RNA Viral/metabolismo , Capsídeo/metabolismo , Proteínas de Ligação a RNA
2.
J Vis Exp ; (185)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35938795

RESUMO

Interest in liquid-electron microscopy (liquid-EM) has skyrocketed in recent years as scientists can now observe real-time processes at the nanoscale. It is extremely desirable to pair high-resolution cryo-EM information with dynamic observations as many events occur at rapid timescales - in the millisecond range or faster. Improved knowledge of flexible structures can also assist in the design of novel reagents to combat emerging pathogens, such as SARS-CoV-2. More importantly, viewing biological materials in a fluid environment provides a unique glimpse of their performance in the human body. Presented here are newly developed methods to investigate the nanoscale properties of virus assemblies in liquid and vitreous ice. To accomplish this goal, well-defined samples were used as model systems. Side-by-side comparisons of sample preparation methods and representative structural information are presented. Sub-nanometer features are shown for structures resolved in the range of ~3.5-Å-10 Å. Other recent results that support this complementary framework include dynamic insights of vaccine candidates and antibody-based therapies imaged in liquid. Overall, these correlative applications advance our ability to visualize molecular dynamics, providing a unique context for their use in human health and disease.


Assuntos
COVID-19 , Gelo , Microscopia Crioeletrônica/métodos , Humanos , SARS-CoV-2 , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...