Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
J Exp Bot ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877792

RESUMO

Major constituents of the plant cell walls are structural proteins that belong to the hydroxyproline-rich glycoprotein (HRGP) family. Leucine-rich repeat extensin (LRXs) proteins contain a leucine-rich domain and a C-terminal domain with repetitive Ser-Pro(3-5) motifs that are potentially to be O-glycosylated. It has been demonstrated that pollen-specific LRX8-11 from Arabidopsis thaliana are necessary to maintain the integrity of the pollen tube cell wall during polarized growth. In HRGP including classical extensins (EXTs) and likely in LRXs, proline residues are converted to hydroxyproline by prolyl-4-hydroxylases (P4Hs), thus defining novel O-glycosylation sites. In this context, we aimed to determine whether hydroxylation and subsequent O-glycosylation of Arabidopsis pollen LRXs are necessary for their proper function and cell wall localization in pollen tubes. We hypothesized that pollen-expressed P4H4 and P4H6 catalyze the hydroxylation of the proline units present in Ser-Pro3-5 motifs of LRX8-LRX11. Here, we show the p4h4-1 p4h6-1 double mutant exhibits a reduction in pollen germination rates and a slight reduction in pollen tube length. Pollen germination is also inhibited by P4Hs inhibitors, suggesting that prolyl hydroxylation is required for pollen tube development. Plants expressing pLRX11::LRX11-GFP in the p4h4-1 p4h6-1 background show partial re-localization of LRX11-GFP from the pollen tube tip apoplast to the cytoplasm. Finally, IP-MS-MS analysis revealed a decrease in oxidized prolines (hydroxyprolines) in LRX11-GFP in the p4h4-1 p4h6-1 background compared to lrx11 plants expressing pLRX11::LRX11-GFP. Taken together, these results suggest P4H4 and P4H6 are required for pollen germination and for proper hydroxylation of LRX11 necessary for its localization at the cell wall of pollen tubes.

2.
J Exp Bot ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833316

RESUMO

Reactive oxygen species (ROS) are essential signaling molecules that enable cells to respond rapidly to a range of stimuli. The capacity of plants to recognize various stressors, incorporate a variety of environmental inputs, and initiate stress-response networks depends on ROS. Plants develop resilience and defensive systems as a result of these processes. Root hairs (RHs) are central components of the root biology since they increase the surface area of the root, anchor it in the soil, increase its ability to absorb water and nutrients, and foster interactions between microorganisms. In this review, we specifically focused on RHs cells and we highlighted the identification of ROS receptors, important new regulatory hubs that connect ROS production, transport, and signaling in the context of two hormonal pathways (auxin and ethylene) and under low temperature environmental input related to nutrients. As ROS plays a crucial role in regulating cell elongation rates, RHs are rapidly gaining traction as a very valuable single plant cell model for investigating ROS homeostasis and signaling. These promising findings might soon aid in the development of plants and roots that are more resilient to environmental stressors.

3.
Plant Physiol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918899

RESUMO

Population expansion is a global issue, especially for food production. Meanwhile, global climate change is damaging our soils, making it difficult for crops to thrive and lowering both production and quality. Poor nutrition and salinity stress affect plant growth and development. Although the impact of individual plant stresses has been studied for decades, the real stress scenario is more complex due to the exposure to multiple stresses at the same time. Here we investigate using existing evidence and a meta-analysis approach to determine molecular linkages between two contemporaneous abiotic stimuli, phosphate (Pi) deficiency and salinity, on a single plant cell model, the root hairs (RHs), which is the first plant cell exposed to them. Understanding how these two stresses work molecularly in RHs may help us build super-adaptable crops and sustainable agriculture in the face of global climate change.

4.
Cont Lens Anterior Eye ; : 102185, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38796331

RESUMO

With over a billion adults worldwide currently affected, presbyopia remains a ubiquitous, global problem. Despite over a century of study, the precise mechanism of ocular accommodation and presbyopia progression remains a topic of debate. Accordingly, this narrative review outlines the lenticular and extralenticular components of accommodation together with the impact of age on the accommodative apparatus, neural control of accommodation, models of accommodation, the impact of presbyopia on retinal image quality, and both historic and contemporary theories of presbyopia.

6.
Open Forum Infect Dis ; 11(1): ofad635, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38173846

RESUMO

Background: Our objective was to assess the health impact of coronavirus disease 2019 (COVID-19) during 2020-2022 in the Madrid region. Methods: We included all individuals registered in the Madrid Health System Registry as of 31 December 2019, and followed them until 31 December 2022. Using a unique personal identifier, we linked the databases of primary care, hospitals, pharmacies, certified laboratories performing diagnostic tests, vaccines, and mortality. Results: Of 6 833 423 individuals, 21.4% had a confirmed COVID-19 diagnosis, and 1.5% had a COVID-19 hospitalization (primary diagnosis). Thirty-day mortality was 1.6% for confirmed COVID-19 (from 11.4% in first semester 2020 to 0.4% in first semester 2022). Thirty-day mortality was 10.8% for COVID-19 hospitalizations (from 14.0% in first semester 2020 to 6.0% in second semester 2022). There were 24 073 deaths within 30 days of a confirmed COVID-19 diagnosis. Advanced age, male sex, higher socioeconomic deprivation, and comorbidities were associated with higher mortality. Conclusions: By linking administrative and clinical databases, we characterized the burden of the COVID-19 pandemic in Madrid over 3 years. Our analysis proposes a high-level framework for comparisons of the burden of COVID-19 across areas worldwide.

8.
Trends Plant Sci ; 29(1): 13-15, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37848359

RESUMO

Eukaryotic cells' proliferation and growth are controlled by the target of rapamycin kinase (TOR). TOR usually activates in favorable energy and nutritional circumstances. This is challenged by recent research, suggesting that plant cells optimized for nutrient absorption in low nutritional conditions may activate the TOR pathway in a polarized manner.


Assuntos
Nutrientes , Sirolimo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
9.
Opt Lett ; 48(23): 6275-6278, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039245

RESUMO

Photonic integrated circuits play a vital role in enabling terahertz (THz) applications that require multi-octave bandwidth. Prior research has been limited in bandwidth due to rectangular waveguide (WRs) interconnects, which can only support single octave at low loss. To overcome this fundamental limitation, we exploit the ultra-wideband (UWB) near-field coupling between planar waveguides and silicon (Si)-based subwavelength dielectric rod waveguides (DRWs) to interconnect THz bandwidth uni-traveling-carrier photodiodes (UTC-PDs) at 0.08-1.03 THz. In a proof-of-concept experiment, the on-chip integrated UTC-PDs demonstrate a UWB operation from 0.1 THz to 0.4 THz. Furthermore, by employing Si DRWs as probes, multi-octave device-under-test characterization of UTC-PDs integrated with UWB transition is enabled with only one DRW probe. The proposed UWB interconnect technology is distinct from previously used WR-based ground-signal-ground probes or quasi-optical free-space coupling since it can provide multi-octave bandwidth and enable on-chip THz circuit integration.

10.
J Exp Bot ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875460

RESUMO

Root hairs (RH) have become an important model system for studying plant growth and how plants modulate their growth in response to cell-intrinsic and environmental stimuli. Here, we will discuss recent advances in our understanding of the molecular mechanisms underlying the growth of Arabidopsis thaliana RH in the interface between responses to environmental cues (e.g. nutrients such as nitrates, phosphate and microorganism) and hormonal stimuli (e.g. auxin). RH growth is under the control of several transcription factors that are also under strong regulation at different levels. In this review we highlight recent new discoveries along these transcriptional pathways that may increase our capacity to enhance nutrient uptake by the roots in the context of abiotic stresses. We used text-mining capacities of the PlantConnectome database to generate the most updated view of RH growth in these complex biological contexts.

11.
Plant Physiol ; 194(1): 81-93, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37801618

RESUMO

Plant genomes encode a unique group of papain-type Cysteine EndoPeptidases (CysEPs) containing a KDEL endoplasmic reticulum (ER) retention signal (KDEL-CysEPs or CEPs). CEPs process the cell-wall scaffolding EXTENSIN (EXT) proteins that regulate de novo cell-wall formation and cell expansion. Since CEPs cleave EXTs and EXT-related proteins, acting as cell-wall-weakening agents, they may play a role in cell elongation. The Arabidopsis (Arabidopsis thaliana) genome encodes 3 CEPs (AtCPE1-AtCEP3). Here, we report that the genes encoding these 3 Arabidopsis CEPs are highly expressed in root-hair (RH) cell files. Single mutants have no evident abnormal RH phenotype, but atcep1-3 atcep3-2 and atcep1-3 atcep2-2 double mutants have longer RHs than wild-type (Wt) plants, suggesting that expression of AtCEPs in root trichoblasts restrains polar elongation of the RH. We provide evidence that the transcription factor NAC1 (petunia NAM and Arabidopsis ATAF1, ATAF2, and CUC2) activates AtCEPs expression in roots to limit RH growth. Chromatin immunoprecipitation indicates that NAC1 binds to the promoter of AtCEP1, AtCEP2, and, to a lower extent, AtCEP3 and may directly regulate their expression. Inducible NAC1 overexpression increases AtCEP1 and AtCEP2 transcript levels in roots and leads to reduced RH growth while the loss of function nac1-2 mutation reduces AtCEP1-AtCEP3 gene expression and enhances RH growth. Likewise, expression of a dominant chimeric NAC1-SRDX repressor construct leads to increased RH length. Finally, we show that RH cell walls in the atcep1-3 atcep3-2 double mutant have reduced levels of EXT deposition, suggesting that the defects in RH elongation are linked to alterations in EXT processing and accumulation. Our results support the involvement of AtCEPs in controlling RH polar growth through EXT processing and insolubilization at the cell wall.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Peptídeo Hidrolases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Curr Biol ; 33(18): 3926-3941.e5, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37699396

RESUMO

As a major determinant of the nutrient-acquiring root surface, root hairs (RHs) provide a low-input strategy to enhance nutrient uptake. Although primary and lateral roots exhibit elongation responses under mild nitrogen (N) deficiency, the foraging response of RHs and underlying regulatory mechanisms remain elusive. Employing transcriptomics and functional studies revealed a framework of molecular components composing a cascade of auxin synthesis, transport, and signaling that triggers RH elongation for N acquisition. Through upregulation of Tryptophan Aminotransferase of Arabidopsis 1 (TAA1) and YUCCA8, low N increases auxin accumulation in the root apex. Auxin is then directed to the RH differentiation zone via the auxin transport machinery, AUXIN TRANSPORTER PROTEIN 1 (AUX1) and PIN-FORMED 2 (PIN2). Upon arrival to the RH zone, auxin activates the transcription factors AUXIN RESPONSE FACTOR 6 and 8 (ARF6/8) to promote the epidermal and auxin-inducible transcriptional module ROOT HAIR DEFECTIVE 6 (RHD6)-LOTUS JAPONICA ROOT HAIRLESS-LIKE 3 (LRL3) to steer RH elongation in response to low N. Our study uncovers a spatially defined regulatory signaling cascade for N foraging by RHs, expanding the mechanistic framework of hormone-regulated nutrient sensing in plant roots.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Epiderme , Cabelo , Transdução de Sinais , Arabidopsis/genética , Ácidos Indolacéticos , Nitrogênio , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos
13.
Curr Opin Plant Biol ; 75: 102386, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37352652

RESUMO

Plants exposed to freezing and above-freezing low temperatures must employ a variety of strategies to minimize fitness loss. There is a considerable knowledge gap regarding how mild low temperatures (around 10 °C) affect plant growth and developmental processes, even though the majority of the molecular mechanisms that plants use to adapt to extremely low temperatures are well understood. Root hairs (RH) have become a useful model system for studying how plants regulate their growth in response to both cell-intrinsic cues and environmental inputs. Here, we'll focus on recent advances in the molecular mechanisms underpinning Arabidopsis thaliana RH growth at mild low temperatures and how these discoveries may influence our understanding of nutrient sensing mechanisms by the roots. This highlights how intricately linked mechanisms are necessary for plant development to take place under specific circumstances and to produce a coherent response, even at the level of a single RH cell.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Temperatura , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica de Plantas
14.
Infect Genet Evol ; 112: 105453, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37245779

RESUMO

Aboriginal and Torres Strait Islander People (respectfully referred to as Indigenous Australians herein) are disparately burdened by many infectious and chronic diseases relative to Australians with European genetic ancestry. Some of these diseases are described in other populations to be influenced by the inherited profile of complement genes. These include complement factor B, H, I and complement factor H-related (CFHR) genes that can contribute to a polygenic complotype. Here the focus is on the combined deletion of CFHR1 and 3 to form a common haplotype (CFHR3-1Δ). The prevalence of CFHR3-1Δ is high in people with Nigerian and African American genetic ancestry and correlates to a higher frequency and severity of systemic lupus erythematosus (SLE) but a lower prevalence of age-related macular degeneration (AMD) and IgA-nephropathy (IgAN). This pattern of disease is similarly observed among Indigenous Australian communities. Additionally, the CFHR3-1Δ complotype is also associated with increased susceptibility to infection with pathogens, such as Neisseria meningitidis and Streptococcus pyogenes, which also have high incidences in Indigenous Australian communities. The prevalence of these diseases, while likely influenced by social, political, environmental and biological factors, including variants in other components of the complement system, may also be suggestive of the CFHR3-1Δ haplotype in Indigenous Australians. These data highlight a need to define the Indigenous Australian complotypes, which may lead to the discovery of new risk factors for common diseases and progress towards precision medicines for treating complement-associated diseases in Indigenous and non-Indigenous populations. Herein, the disease profiles suggestive of a common complement CFHR3-1Δ control haplotype are examined.


Assuntos
Povos Aborígenes Australianos e Ilhéus do Estreito de Torres , Humanos , Haplótipos , Austrália/epidemiologia , Doença Crônica
15.
Opt Express ; 31(4): 6484-6498, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823903

RESUMO

In this paper, we report on waveguide-type modified uni-traveling-carrier photodiodes (MUTC-PDs) providing a record high output power level for non-resonant photodiodes in the WR3.4 band. Indium phosphide (InP) based waveguide-type 1.55 µm MUTC-PDs have been fabricated and characterized thoroughly. Maximum output powers of -0.6 dBm and -2.7 dBm were achieved at 240 GHz and 280 GHz, respectively. This has been accomplished by an optimized layer structure and doping profile design that takes transient carrier dynamics into account. An energy-balance model has been developed to study and optimize carrier transport at high optical input intensities. The advantageous THz capabilities of the optimized MUTC layer structure are confirmed by experiments revealing a transit time limited cutoff frequency of 249 GHz and a saturation photocurrent beyond 20 mA in the WR3.4 band. The responsivity for a 16 µm long waveguide-type THz MUTC-PD is found to be 0.25 A/W. In addition, bow-tie antenna integrated waveguide-type MUTC-PDs are fabricated and reported to operate up to 0.7 THz above a received power of -40 dBm.

16.
New Phytol ; 238(1): 169-185, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36716782

RESUMO

Root hairs (RH) are excellent model systems for studying cell size and polarity since they elongate several hundred-fold their original size. Their tip growth is determined both by intrinsic and environmental signals. Although nutrient availability and temperature are key factors for a sustained plant growth, the molecular mechanisms underlying their sensing and downstream signaling pathways remain unclear. We use genetics to address the roles of the cell surface receptor kinase FERONIA (FER) and the nutrient sensing TOR Complex 1 (TORC) in RH growth. We identified that low temperature (10°C) triggers a strong RH elongation response in Arabidopsis thaliana involving FER and TORC. We found that FER is required to perceive limited nutrient availability caused by low temperature. FERONIA interacts with and activates TORC-downstream components to trigger RH growth. In addition, the small GTPase Rho of plants 2 (ROP2) is also involved in this RH growth response linking FER and TOR. We also found that limited nitrogen nutrient availability can mimic the RH growth response at 10°C in a NRT1.1-dependent manner. These results uncover a molecular mechanism by which a central hub composed by FER-ROP2-TORC is involved in the control of RH elongation under low temperature and nitrogen deficiency.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Nitratos/farmacologia , Nitratos/metabolismo , Proteínas de Arabidopsis/metabolismo , Temperatura , Fosfotransferases/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Ânions/metabolismo
17.
Int J Neurosci ; 133(8): 819-821, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34623197

RESUMO

OBJECTIVE: Sphenoid sinuses mucocele (SSM) is an uncommon cause of orbital apex syndrome (OAS). Diagnosis of neurological complications in SSM might be delayed when the expansion of mucocele beyond the sinuses is not evident in conventional sinuses imaging. METHODS: We present a case of a 76-years old man with spared-pupil ophthalmoplegia associated with ptosis caused by a unilateral left SSM in which internal carotid artery Doppler ultrasound showed distal sub-occlusion waves pattern. RESULTS: Sinus occupation was noted in the magnetic resonance imaging (MRI) and was further evaluated in computed tomography (CT) scan and MR angiography. Nor CT or MR angiography showed clear evidence of neighboring structures compression. Doppler ultrasound of internal carotid showed high-resistance waveforms and decreased wave velocities helping diagnosis. Structures compression was confirmed intra-operatively and the patient was discharged asymptomatic after sphenoid sinus drainage. CONCLUSION: In this first report of carotid Doppler ultrasound findings in a patient with a neurological presentation of a sphenoid sinus mucocele, a high-resistance waveform of the internal carotid may help differentiate uncomplicated sinusitis from invasive mucocele.


Assuntos
Blefaroptose , Mucocele , Oftalmoplegia , Doenças dos Seios Paranasais , Masculino , Humanos , Idoso , Seio Esfenoidal/diagnóstico por imagem , Mucocele/complicações , Mucocele/diagnóstico por imagem , Pupila , Oftalmoplegia/diagnóstico por imagem , Oftalmoplegia/etiologia , Blefaroptose/patologia , Imageamento por Ressonância Magnética , Doenças dos Seios Paranasais/complicações , Doenças dos Seios Paranasais/diagnóstico por imagem , Ultrassonografia Doppler/efeitos adversos , Artérias Carótidas
19.
Sensors (Basel) ; 24(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38203101

RESUMO

Glaucoma, a leading cause of blindness, damages the optic nerve, making early diagnosis challenging due to no initial symptoms. Fundus eye images taken with a non-mydriatic retinograph help diagnose glaucoma by revealing structural changes, including the optic disc and cup. This research aims to thoroughly analyze saliency maps in interpreting convolutional neural network decisions for diagnosing glaucoma from fundus images. These maps highlight the most influential image regions guiding the network's decisions. Various network architectures were trained and tested on 739 optic nerve head images, with nine saliency methods used. Some other popular datasets were also used for further validation. The results reveal disparities among saliency maps, with some consensus between the folds corresponding to the same architecture. Concerning the significance of optic disc sectors, there is generally a lack of agreement with standard medical criteria. The background, nasal, and temporal sectors emerge as particularly influential for neural network decisions, showing a likelihood of being the most relevant ranging from 14.55% to 28.16% on average across all evaluated datasets. We can conclude that saliency maps are usually difficult to interpret and even the areas indicated as the most relevant can be very unintuitive. Therefore, its usefulness as an explanatory tool may be compromised, at least in problems such as the one addressed in this study, where the features defining the model prediction are generally not consistently reflected in relevant regions of the saliency maps, and they even cannot always be related to those used as medical standards.


Assuntos
Glaucoma , Disco Óptico , Humanos , Fundo de Olho , Glaucoma/diagnóstico por imagem , Disco Óptico/diagnóstico por imagem , Diagnóstico por Imagem , Redes Neurais de Computação
20.
Front Microbiol ; 13: 1083270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583055

RESUMO

Phosphorus (as phosphate, Pi) and iron (Fe) are critical nutrients in plants that are often poorly available in the soil and can be microbially affected. This work aimed to evaluate how plant-rhizobacteria interaction changes due to different Pi or Fe nutritional scenarios and to study the underlying molecular mechanisms of the microbial modulation of these nutrients in plants. Thus, three proteobacteria (Paraburkholderia phytofirmans PsJN, Azospirillum brasilense Sp7, and Pseudomonas putida KT2440) were used to inoculate Arabidopsis seeds. Additionally, the seeds were exposed to a nutritional factor with the following levels for each nutrient: sufficient (control) or low concentrations of a highly soluble source or sufficient concentrations of a low solubility source. Then, the effects of the combinatorial factors were assessed in plant growth, nutrition, and genetic regulation. Interestingly, some bacterial effects in plants depended on the nutrient source (e.g., increased aerial zones induced by the strains), and others (e.g., decreased primary roots induced by Sp7 or KT2440) occurred regardless of the nutritional treatment. In the short-term, PsJN had detrimental effects on plant growth in the presence of the low-solubility Fe compound, but this was not observed in later stages of plant development. A thorough regulation of the phosphorus content was detected in plants independent of the nutritional treatment. Nevertheless, inoculation with KT2440 increased P content by 29% Pi-deficiency exposed plants. Conversely, the inoculation tended to decrease the Fe content in plants, suggesting a competition for this nutrient in the rhizosphere. The P-source also affected the effects of the PsJN strain in a double mutant of the phosphate starvation response (PSR). Furthermore, depending on the nutrient source, PsJN and Sp7 strains differentially regulated PSR and IAA- associated genes, indicating a role of these pathways in the observed differential phenotypical responses. In the case of iron, PsJN and SP7 regulated iron uptake-related genes regardless of the iron source, which may explain the lower Fe content in inoculated plants. Overall, the plant responses to these proteobacteria were not only influenced by the nutrient concentrations but also by their availabilities, the elapsed time of the interaction, and the specific identities of the beneficial bacteria. Graphical AbstractThe effects of the different nutritional and inoculation treatments are indicated for plant growth parameters (A), gene regulation (B) and phosphorus and iron content (C). Figures created with BioRender.com with an academic license.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...