Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363137

RESUMO

The ability to control transgene expression, both spatially and temporally, is essential for studying model organisms. In Drosophila, spatial control is primarily provided by the GAL4/UAS system, whilst temporal control relies on a temperature-sensitive GAL80 (which inhibits GAL4) and drug-inducible systems. However, these are not ideal. Shifting temperature can impact on many physiological and behavioural traits, and the current drug-inducible systems are either leaky, toxic, incompatible with existing GAL4-driver lines, or do not generate effective levels of expression. Here, we describe the auxin-inducible gene expression system (AGES). AGES relies on the auxin-dependent degradation of a ubiquitously expressed GAL80, and therefore, is compatible with existing GAL4-driver lines. Water-soluble auxin is added to fly food at a low, non-lethal, concentration, which induces expression comparable to uninhibited GAL4 expression. The system works in both larvae and adults, providing a stringent, non-lethal, cost-effective, and convenient method for temporally controlling GAL4 activity in Drosophila.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Animais Geneticamente Modificados , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Expressão Gênica , Ácidos Indolacéticos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Biol Open ; 9(5)2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493733

RESUMO

The remarkable diversity of neurons in the nervous system is generated during development, when properties such as cell morphology, receptor profiles and neurotransmitter identities are specified. In order to gain a greater understanding of neurotransmitter specification we profiled the transcription state of cholinergic, GABAergic and glutamatergic neurons in vivo at three developmental time points. We identified 86 differentially expressed transcription factors that are uniquely enriched, or uniquely depleted, in a specific neurotransmitter type. Some transcription factors show a similar profile across development, others only show enrichment or depletion at specific developmental stages. Profiling of Acj6 (cholinergic enriched) and Ets65A (cholinergic depleted) binding sites in vivo reveals that they both directly bind the ChAT locus, in addition to a wide spectrum of other key neuronal differentiation genes. We also show that cholinergic enriched transcription factors are expressed in mostly non-overlapping populations in the adult brain, implying the absence of combinatorial regulation of neurotransmitter fate in this context. Furthermore, our data underlines that, similar to Caenorhabditis elegans, there are no simple transcription factor codes for neurotransmitter type specification.This article has an associated First Person interview with the first author of the paper.


Assuntos
Drosophila/genética , Drosophila/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Neurotransmissores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Biomarcadores , Proteínas de Drosophila/genética , Perfilação da Expressão Gênica , Modelos Biológicos , Neurônios/metabolismo
3.
Dis Model Mech ; 12(4)2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30910908

RESUMO

The Drosophila fat body is the primary organ of energy storage as well as being responsible for the humoral response to infection. Its physiological function is of critical importance to the survival of the organism; however, many molecular regulators of its function remain ill-defined. Here, we show that the Drosophila melanogaster bromodomain-containing protein FS(1)H is required in the fat body for normal lifespan as well as metabolic and immune homeostasis. Flies lacking fat body fs(1)h exhibit short lifespan, increased expression of immune target genes, an inability to metabolize triglyceride, and low basal AKT activity, mostly resulting from systemic defects in insulin signalling. Removal of a single copy of the AKT-responsive transcription factor foxo normalises lifespan, metabolic function, uninduced immune gene expression and AKT activity. We suggest that the promotion of systemic insulin signalling activity is a key in vivo function of fat body fs(1)h This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Drosophila melanogaster/genética , Ativação Enzimática , Corpo Adiposo/metabolismo , Regulação da Expressão Gênica , Hipoglicemia/patologia , Insulina/metabolismo , Longevidade , Fenótipo , Análise de Sobrevida , Triglicerídeos/metabolismo
4.
Elife ; 72018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29481322

RESUMO

During development eukaryotic gene expression is coordinated by dynamic changes in chromatin structure. Measurements of accessible chromatin are used extensively to identify genomic regulatory elements. Whilst chromatin landscapes of pluripotent stem cells are well characterised, chromatin accessibility changes in the development of somatic lineages are not well defined. Here we show that cell-specific chromatin accessibility data can be produced via ectopic expression of E. coli Dam methylase in vivo, without the requirement for cell-sorting (CATaDa). We have profiled chromatin accessibility in individual cell-types of Drosophila neural and midgut lineages. Functional cell-type-specific enhancers were identified, as well as novel motifs enriched at different stages of development. Finally, we show global changes in the accessibility of chromatin between stem-cells and their differentiated progeny. Our results demonstrate the dynamic nature of chromatin accessibility in somatic tissues during stem cell differentiation and provide a novel approach to understanding gene regulatory mechanisms underlying development.


Assuntos
Diferenciação Celular , Cromatina/metabolismo , Drosophila/embriologia , Epigênese Genética , Células-Tronco Pluripotentes/fisiologia , Animais , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Coloração e Rotulagem
5.
J Comp Neurol ; 525(3): 639-660, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27506156

RESUMO

Developmental plasticity allows individuals with the same genotype to show different phenotypes in response to environmental changes. An example of this is how neuronal diversity is protected at the expense of neuronal number under sustained undernourishment during the development of the Drosophila optic lobe. In the development of the Drosophila central nervous system, neuroblasts go through two phases of neurogenesis separated by a period of mitotic quiescence. Although during embryonic development much evidence indicates that both cell number and the cell fates generated by each neuroblast are very precisely controlled in a cell autonomous manner, after quiescence extrinsic factors control the reactivation of neuroblast proliferation in a fashion that has not yet been elucidated. Moreover, there is very little information about whether environmental changes affect lineage progression during postembryonic neurogenesis. Using as a model system the pattern of abdominal leucokinergic neurons (ABLKs), we have analyzed how changes in a set of environmental factors affect the number of ABLKs generated during postembryonic neurogenesis. We describe the variability in ABLK number between individuals and between hemiganglia of the same individual and, by genetic analysis, we identify the bithorax-complex genes and the ecdysone hormone as critical factors in these differences. We also explore the possible adaptive roles involved in this process. J. Comp. Neurol. 525:639-660, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Neurogênese , Neurônios/citologia , Neurônios/fisiologia , Abdome/anatomia & histologia , Abdome/crescimento & desenvolvimento , Abdome/inervação , Animais , Animais Geneticamente Modificados , Contagem de Células , Linhagem Celular , Sistema Nervoso Central/citologia , Sistema Nervoso Central/crescimento & desenvolvimento , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Metamorfose Biológica , Modelos Animais , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Canais de Sódio/genética , Canais de Sódio/metabolismo , Estresse Fisiológico
6.
Development ; 141(22): 4366-74, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25344076

RESUMO

During the development of the central nervous system, neural progenitors generate an enormous number of distinct types of neuron and glial cells by asymmetric division. Intrinsic genetic programs define the combinations of transcription factors that determine the fate of each cell, but the precise mechanisms by which all these factors are integrated at the level of individual cells are poorly understood. Here, we analyzed the specification of the neurons in the ventral nerve cord of Drosophila that express Crustacean cardioactive peptide (CCAP). There are two types of CCAP neurons: interneurons and efferent neurons. We found that both are specified during the Hunchback temporal window of neuroblast 3-5, but are not sibling cells. Further, this temporal window generates two ganglion mother cells that give rise to four neurons, which can be identified by the expression of empty spiracles. We show that the expression of Hunchback in the neuroblast increases over time and provide evidence that the absolute levels of Hunchback expression specify the two different CCAP neuronal fates.


Assuntos
Diferenciação Celular/fisiologia , Sistema Nervoso Central/embriologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Bromodesoxiuridina , Sistema Nervoso Central/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Imuno-Histoquímica , Microscopia Confocal , Neurônios/citologia
7.
Fly (Austin) ; 8(1): 26-32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24406332

RESUMO

One of the key aspects of functional nervous systems is the restriction of particular neural subtypes to specific regions, which permits the establishment of differential segment-specific neuromuscular networks. Although Hox genes play a major role in shaping the anterior-posterior body axis during animal development, our understanding of how they act in individual cells to determine particular traits at precise developmental stages is rudimentary. We have used the abdominal leucokinergic neurons (ABLKs) to address this issue. These neurons are generated during both embryonic and postembryonic neurogenesis by the same progenitor neuroblast, and are designated embryonic and postembryonic ABLKs, respectively. We report that the genes of the Bithorax-Complex, Ultrabithorax (Ubx) and abdominal-A (abd-A) are redundantly required to specify the embryonic ABLKs. Moreover, the segment-specific pattern of the postembryonic ABLKs, which are restricted to the most anterior abdominal segments, is controlled by the absence of Abdominal-B (Abd-B), which we found was able to repress the expression of the neuropeptide leucokinin. We discuss this and other examples of how Hox genes generate diversity within the central nervous system of Drosophila.


Assuntos
Padronização Corporal , Drosophila/embriologia , Genes Homeobox , Neurogênese , Animais , Sistema Nervoso Central/embriologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Homeodomínio/metabolismo , Larva/metabolismo
8.
Dev Dyn ; 243(3): 402-14, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24155257

RESUMO

BACKGROUND: The Drosophila central nervous system contains many types of neurons that are derived from a limited number of progenitors as evidenced in the ventral ganglion. The situation is much more complex in the developing brain. The main neuronal structures in the adult brain are generated in the larval neurogenesis, although the basic neuropil structures are already laid down during embryogenesis. The embryonic factors involved in adult neuron origin are largely unknown. To shed light on how brain cell diversity is achieved, we studied the early temporal and spatial cues involved in the specification of lateral horn leucokinin peptidergic neurons (LHLKs). RESULTS: Our analysis revealed that these neurons have an embryonic origin. We identified their progenitor neuroblast as Pcd6 in the Technau and Urbach terminology. Evidence was obtained that a temporal series involving the transcription factors Kr, Pdm, and Cas participates in the genesis of the LHLK lineage, the Castor window being the one in which the LHLKs neurons are generated. It was also shown that Notch signalling and Dimmed are involved in the specification of the LHLKs. CONCLUSIONS: Serial homologies with the origin and factors involved in specification of the abdominal leucokinergic neurons (ABLKs) have been detected.


Assuntos
Encéfalo , Proteínas de Drosophila/biossíntese , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neurópilo , Fatores de Transcrição/biossíntese , Animais , Encéfalo/citologia , Encéfalo/embriologia , Proteínas de Drosophila/genética , Drosophila melanogaster , Células-Tronco Neurais/citologia , Neurópilo/citologia , Neurópilo/metabolismo , Fatores de Transcrição/genética
9.
Development ; 140(10): 2139-48, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23633511

RESUMO

Although the Hox genes are the main factors involved in the generation of diversity along the anterior/posterior body axis of segmented organisms, it is still largely unknown how these genes act in single cells to determine specific traits at precise developmental stages. The aim of this study was to understand the mechanisms by which Hox genes of the Bithorax complex (Bx-C) of Drosophila act to define segmental differences in the ventral nerve cord of the central nervous system. To achieve this, we have focused on the specification of the leucokinin-expressing neurons. We find that these neurons are specified from the same progenitor neuroblast at two different developmental stages: embryonic and larval neurogenesis. We show that genes of the Bx-C acted in postmitotic cells to specify the segment-specific appearance of leucokinergic cells in the larval and adult ventral nerve cord.


Assuntos
Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Sistema Nervoso/embriologia , Animais , Padronização Corporal , Linhagem da Célula , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Cruzamentos Genéticos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Genótipo , Imuno-Histoquímica , Neuropeptídeos/metabolismo , Fenótipo , Células-Tronco/citologia , Fatores de Tempo
10.
Development ; 137(19): 3327-36, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20823069

RESUMO

Identification of the genetic mechanisms underlying the specification of large numbers of different neuronal cell fates from limited numbers of progenitor cells is at the forefront of developmental neurobiology. In Drosophila, the identities of the different neuronal progenitor cells, the neuroblasts, are specified by a combination of spatial cues. These cues are integrated with temporal competence transitions within each neuroblast to give rise to a specific repertoire of cell types within each lineage. However, the nature of this integration is poorly understood. To begin addressing this issue, we analyze the specification of a small set of peptidergic cells: the abdominal leucokinergic neurons. We identify the progenitors of these neurons, the temporal window in which they are specified and the influence of the Notch signaling pathway on their specification. We also show that the products of the genes klumpfuss, nab and castor play important roles in their specification via a genetic cascade.


Assuntos
Sistema Nervoso Central/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem da Célula , Sistema Nervoso Central/citologia , Sistema Nervoso Central/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Neuropeptídeos/metabolismo , Receptores Notch/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...