Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Biology (Basel) ; 13(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38785783

RESUMO

Neurological commitment is a neglected manifestation of Chagas disease (CD). Meningoencephalitis mainly affects children and immunosuppressed patients, while stroke can occur with or without cardiac compromise. One of the possible causes of stroke development is microvascular commitment. Our group previously described that experimental Trypanossoma cruzi acute infection leads to cerebral microvasculopathy. This condition is characterized by decreased capillary density, increased leukocyte rolling and adhesion, and endothelial dysfunction. CD was discovered 114 years ago, and until today, only two drugs have been available for clinical treatment: benznidazole and nifurtimox. Both present a high cure rate for the acute phase (80%) and small cure rate for the chronic phase (20%). In addition, the high occurrence of side-effects, without proper medical follow-up, can result in treatment abandonment. Therefore, the search for new therapeutic schemes is necessary. Statins are drugs already used in the clinic that have several pleiotropic effects including endothelial function improvement, anti-inflammatory action, as well as trypanocidal effects, making them a potential alternative treatment for brain microvasculopathy in CD. Here, we investigate the effect of lovastatin (LOV) on brain microvasculopathy and inflammatory parameters. Swiss Webster mice were intraperitoneally inoculated with the Y strain of T. cruzi. Treatment with lovastatin (20 mg/kg/day) was initiated 24 h after the infection and continued for 14 consecutive days. We observed that LOV treatment did not affect parasitemia, brain microcirculation alterations, or the reduction in cerebral blood flow caused by T. cruzi infection. Also, LOV did not prevent the increased number of CD3+ cells and eNOS levels in the T. cruzi-infected brain. No alterations were observed on VCAM-1 and MCP-1 expressions, neither caused by infection nor LOV treatment. However, LOV prevented the increase in F4/80+ cells and ICAM-1 levels in the brain caused by acute infection with T. cruzi. These results suggest an anti-inflammatory activity of LOV, but more studies are needed to elucidate the role of LOV in CD acute infection.

3.
Microcirculation ; 30(7): e12825, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37549191

RESUMO

OBJECTIVES: This study aimed to evaluate the effects of the antidiabetics liraglutide, a GLP-1 analog, and empagliflozin, an SGLT-2 inhibitor, on the brain microcirculation of diabetic rats. METHODS: Type 2 diabetes mellitus (DM) was experimentally induced in male Wistar rats by combining a high-fat diet and a low dose of streptozotocin (35 mg/kg). Liraglutide (100 µg/kg s.c.) and empagliflozin (10 mg/kg, oral) were administered for 5 weeks. Body weight was monitored periodically. Oral glucose tolerance, fasting glycemia, and blood triglycerides were evaluated after the treatments. Endothelial-leukocyte interactions in the brain microcirculation and structural capillary density were assessed. RESULTS: DM rats presented metabolic and cerebrovascular alterations. Liraglutide treatment decreased body weight and blood triglycerides of DM rats. Empagliflozin treatment improved glucose tolerance but only the combination therapy significantly reduced fasting blood glucose. Both treatments and their combination reduced leukocyte adhesion into the endothelium of brain venules. However, empagliflozin was more effective in preventing DM-induced microvascular rarefaction. CONCLUSION: These findings suggest that chronic treatment with SGLT2 inhibitors and GLP-1 receptor agonists may serve as potential therapeutic approaches to prevent microvascular complications associated with diabetes.

4.
Braz J Infect Dis ; 27(1): 102719, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36423696

RESUMO

Systemic microvascular dysfunction has been shown to be present in COVID-19, and serum cytokines are known to be involved in the regulation of vascular function. We sought to evaluate systemic microvascular endothelial function, with laser doppler perfusion monitoring (LDPM), and plasma levels of cytokines after acute COVID-19. Individuals admitted to a Cardiology hospital with acute COVID-19 and followed for 12-15 months after recovery underwent noninvasive evaluation of systemic endothelium-dependent microvascular reactivity by cutaneous LDPM with local thermal hyperemia (LTH). A multiplex biometric immunoassay panel was used to assess 48 serum cytokines and chemokines. Twenty patients and 14 control volunteers were enrolled. The areas under the curves of vasodilation induced by LTH were significantly increased after recovery (P=0.009) and were not different from values obtained in healthy volunteers (P = 0.85). The peak microvascular flow during LTH did also significantly increase (P = 0.02), and was not different form values obtained in healthy volunteers (P = 0.55). Several cytokines displayed significantly reduced serum concentrations after recovery from COVID-19. In conclusion, endothelium-dependent systemic microvascular reactivity improved after recovery from COVID-19 in patients with cardiovascular diseases, in parallel with a reduction in the levels of several serum cytokines and chemokines involved in the regulation of vascular function and inflammation.


Assuntos
COVID-19 , Hiperemia , Humanos , Citocinas , Microcirculação/fisiologia , Vasodilatação/fisiologia , Pele/irrigação sanguínea
5.
Braz. j. infect. dis ; 27(1): 102719, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1420729

RESUMO

Abstract Systemic microvascular dysfunction has been shown to be present in COVID-19, and serum cytokines are known to be involved in the regulation of vascular function. We sought to evaluate systemic microvascular endothelial function, with laser doppler perfusion monitoring (LDPM), and plasma levels of cytokines after acute COVID-19. Individuals admitted to a Cardiology hospital with acute COVID-19 and followed for 12-15 months after recovery underwent noninvasive evaluation of systemic endothelium-dependent microvascular reactivity by cutaneous LDPM with local thermal hyperemia (LTH). A multiplex biometric immunoassay panel was used to assess 48 serum cytokines and chemokines. Twenty patients and 14 control volunteers were enrolled. The areas under the curves of vasodilation induced by LTH were significantly increased after recovery (P=0.009) and were not different from values obtained in healthy volunteers (P= 0.85). The peak microvascular flow during LTH did also significantly increase (P= 0.02), and was not different form values obtained in healthy volunteers (P= 0.55). Several cytokines displayed significantly reduced serum concentrations after recovery from COVID-19. In conclusion, endothelium-dependent systemic microvascular reactivity improved after recovery from COVID-19 in patients with cardiovascular diseases, in parallel with a reduction in the levels of several serum cytokines and chemokines involved in the regulation of vascular function and inflammation.

6.
Sci Rep ; 12(1): 21048, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473897

RESUMO

Central nervous system alterations was described in Chagas disease in both human and experimental models, leading to meningoencephalitis, stroke and cognitive impairment. Recently, our group demonstrated that acute infection by Trypanossoma cruzi leads to cerebral microvasculophaty in mice with endothelial dysfunction, capillary rarefaction, increased rolling and leukocyte adhesion. Only benznidazole and nifurtimox are available for clinical treatment, they have an efficiency of 80% in the acute phase and less than 20% in chronic phase. However, the effect of these drugs on brain microcirculation has not yet been evaluated. We hypothesized that early treatment with benznidazole could protect brain microcirculation during acute experimental Chagas disease. Swiss Webster mice were inoculated with 104 trypomastigotes forms of T. cruzi, and after 24 h they were treated with 50 or 100 mg/kg/day of benznidazole for 14 consecutive days. In untreated infected mice, we observed cerebral microvascular rarefaction, increase in leukocyte rolling and adhesion, reduced cerebral blood flow, and increased CD3+ and F4-80+ cells in brain tissue. Early treatment with benznidazole at 100 mg/kg/day and 50 mg/kg/day prevented the occurrence of the alterations mentioned. Here, we show that BZ is able to protect the microcirculation and reduced brain inflammation in acute experimental Chagas disease.


Assuntos
Doença de Chagas , Animais , Humanos , Camundongos , Doença de Chagas/tratamento farmacológico
7.
J Neuroinflammation ; 19(1): 104, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35488354

RESUMO

BACKGROUND: Metabolic syndrome (MS) is defined as a low-grade proinflammatory state in which abnormal metabolic and cardiovascular factors increase the risk of developing cardiovascular disease and neuroinflammation. Events, such as the accumulation of visceral adipose tissue, increased plasma concentrations of free fatty acids, tissue hypoxia, and sympathetic hyperactivity in MS may contribute to the direct or indirect activation of Toll-like receptors (TLRs), specifically TLR4, which is thought to be a major component of this syndrome. Activation of the innate immune response via TLR4 may contribute to this state of chronic inflammation and may be related to the neuroinflammation and neurodegeneration observed in MS. In this study, we investigated the role of TLR4 in the brain microcirculation and in the cognitive performance of high-fat diet (HFD)-induced MS mice. METHODS: Wild-type (C3H/He) and TLR4 mutant (C3H/HeJ) mice were maintained under a normal diet (ND) or a HFD for 24 weeks. Intravital video-microscopy was used to investigate the functional capillary density, endothelial function, and endothelial-leukocyte interactions in the brain microcirculation. Plasma concentrations of monocyte chemoattractant protein-1 (MCP-1), adipokines and metabolic hormones were measured with a multiplex immunoassay. Brain postsynaptic density protein-95 and synaptophysin were evaluated by western blotting; astrocytic coverage of the vessels, microglial activation and structural capillary density were evaluated by immunohistochemistry. RESULTS: The HFD-induced MS model leads to metabolic, hemodynamic, and microcirculatory alterations, as evidenced by capillary rarefaction, increased rolling and leukocyte adhesion in postcapillary venules, endothelial dysfunction, and less coverage of astrocytes in the vessels, which are directly related to cognitive decline and neuroinflammation. The same model of MS reproduced in mice deficient for TLR4 because of a genetic mutation does not generate such changes. Furthermore, the comparison of wild-type mice fed a HFD and a normolipid diet revealed differences in inflammation in the cerebral microcirculation, possibly related to lower TLR4 activation. CONCLUSIONS: Our results demonstrate that TLR4 is involved in the microvascular dysfunction and neuroinflammation associated with HFD-induced MS and possibly has a causal role in the development of cognitive decline.


Assuntos
Disfunção Cognitiva , Síndrome Metabólica , Animais , Disfunção Cognitiva/complicações , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Síndrome Metabólica/etiologia , Camundongos , Camundongos Endogâmicos C3H , Microcirculação , Mutação , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
8.
J Inflamm Res ; 14: 2267-2276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079332

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has put into evidence another pandemic - obesity. Currently, several studies have documented the association between obesity and COVID-19 severity. The mechanisms underlying the increased risk of complications and mortality in obese patients with COVID-19 are of diverse nature. Inflammation plays a central role in obesity. Metabolic alterations seen in obese patients are related to an inflammatory response, and several studies report elevated levels of circulating inflammatory cytokines in obese patients. Also, deregulated expression of adipokines, such as leptin and resistin, increase the expression of vascular adhesion molecule 1 and intercellular adhesion molecule 1 that contribute to increased vascular leukocyte adhesiveness and additional oxidative stress. Additionally, it is now recognized that the chronic impairment of systemic vascular endothelial function in patients with cardiovascular and metabolic disorders, including obesity, when intensified by the detrimental effects of SARS-CoV-2 over the endothelium, may explain their worse outcomes in COVID-19. In fact, vascular endothelial dysfunction may contribute to a unfavorable response of the endothelium to the infection by SARS-CoV-2, whereas alterations in cardiac structure and function and the prothrombotic environment in obesity may also provide a link to the increased cardiovascular events in these patients.

9.
Microvasc Res ; 134: 104119, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33278457

RESUMO

BACKGROUND: Microvascular dysfunction, serum cytokines and chemokines may play important roles in pathophysiology of coronavirus disease 2019 (COVID-19), especially in severe cases. METHODS: Patients with COVID-19 underwent non-invasive evaluation of systemic endothelium-dependent microvascular reactivity - using laser Doppler perfusion monitoring in the skin of the forearm - coupled to local thermal hyperemia. Maximal microvascular vasodilatation (44 °C thermal plateau phase) was used as endpoint. A multiplex biometric immunoassay was used to assess a panel of 48 serum cytokines and chemokines. Severe COVID-19 (S-COVID) was defined according to WHO criteria, while all other cases of COVID-19 were considered mild to moderate (M-COVID). A group of healthy individuals who tested negative for SARS-CoV-2 served as a control group and was also evaluated with LDPM. RESULTS: Thirty-two patients with COVID-19 (25% S-COVID) and 14 controls were included. Basal microvascular flow was similar between M-COVID and controls (P = 0.69) but was higher in S-COVID than in controls (P = 0.005) and M-COVID patients (P = 0.01). The peak microvascular vasodilator response was markedly decreased in both patient groups (M-COVID, P = 0.001; S-COVID, P < 0.0001) compared to the healthy group. The percent increases in microvascular flow were markedly reduced in both patient groups (M-COVID, P < 0.0001; S-COVID, P < 0.0001) compared to controls. Patients with S-COVID had markedly higher concentrations of dissimilar proinflammatory cytokines and chemokines, compared to patients with M-COVID. CONCLUSIONS: In patients with COVID-19, especially with S-COVID, endothelium-dependent microvascular vasodilator responses are reduced, while serum cytokines and chemokines involved in the regulation of vascular function and inflammation are increased.


Assuntos
COVID-19/fisiopatologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Endotélio Vascular/fisiopatologia , Microcirculação , Adulto , Idoso , Quimiocinas/sangue , Citocinas/sangue , Feminino , Voluntários Saudáveis , Hemodinâmica , Humanos , Imunoensaio , Fluxometria por Laser-Doppler , Masculino , Pessoa de Meia-Idade , Perfusão , Índice de Gravidade de Doença
10.
Stem Cell Res Ther ; 11(1): 367, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32843073

RESUMO

BACKGROUND: Malaria is one of the most critical global infectious diseases. Severe systemic inflammatory diseases, such as cerebral malaria, lead to the development of cognitive and behavioral alterations, such as learning disabilities and loss of memory capacity, as well as increased anxiety and depression. The consequences are profound and usually contribute to reduce the patient's quality of life. There are no therapies to treat the neurological sequelae of cerebral malaria. Mesenchymal stromal cells (MSCs) may be an alternative, since they have been used as therapy for neurodegenerative diseases and traumatic lesions of the central nervous system. So far, no study has investigated the effects of MSC therapy on the blood-brain barrier, leukocyte rolling and adherence in the brain, and depression like-behavior in experimental cerebral malaria. METHODS: Male C57BL/6 mice were infected with Plasmodium berghei ANKA (PbA, 1 × 106 PbA-parasitized red blood cells, intraperitoneally). At day 6, PbA-infected animals received chloroquine (25 mg/kg orally for seven consecutive days) as the antimalarial treatment and were then randomized to receive MSCs (1 × 105 cells in 0.05 ml of saline/mouse) or saline (0.05 ml) intravenously. Parasitemia, clinical score, and survival rate were analyzed throughout the experiments. Evans blue assay was performed at 6, 7, and 15 days post-infection (dpi). Behavioral tests were performed at 5 and 15 dpi. Intravital microscopy experiments and brain-derived neurotrophic factor (BDNF) protein expression analyses were performed at 7 dpi, whereas inflammatory mediators were measured at 15 dpi. In vitro, endothelial cells were used to evaluate the effects of conditioned media derived from MSCs (CMMSC) on cell viability by lactate dehydrogenase (LDH) release. RESULTS: PbA-infected mice presented increased parasitemia, adherent leukocytes, blood-brain barrier permeability, and reduced BDNF protein levels, as well as depression-like behavior. MSCs mitigated behavioral alterations, restored BDNF and transforming growth factor (TGF)-ß protein levels, and reduced blood-brain barrier dysfunction and leukocyte adhesion in the brain microvasculature. In a cultured endothelial cell line stimulated with heme, CMMSC reduced LDH release, suggesting a paracrine mechanism of action. CONCLUSION: A single dose of MSCs as adjuvant therapy protected against vascular damage and improved depression-like behavior in mice that survived experimental cerebral malaria.


Assuntos
Malária Cerebral , Células-Tronco Mesenquimais , Animais , Encéfalo , Depressão/terapia , Modelos Animais de Doenças , Células Endoteliais , Malária Cerebral/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei , Qualidade de Vida
11.
J Neuroinflammation ; 17(1): 117, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299450

RESUMO

BACKGROUND: Brain circulation disorders such as chronic cerebral hypoperfusion have been associated with a decline in cognitive function during the development of dementia. Astrocytes together with microglia participate in the immune response in the CNS and make them potential sentinels in the brain parenchyma. In addition, astrocytes coverage integrity has been related to brain homeostasis. Currently, physical exercise has been proposed as an effective intervention to promote brain function improvement. However, the neuroprotective effects of early physical exercise on the astrocyte communication with the microcirculation and the microglial activation in a chronic cerebral hypoperfusion model are still unclear. The aim of this study was to investigate the impact of early intervention with physical exercise on cognition, brain microcirculatory, and inflammatory parameters in an experimental model of chronic cerebral hypoperfusion induced by permanent bilateral occlusion of the common carotid arteries (2VO). METHODS: Wistar rats aged 12 weeks were randomly divided into four groups: Sham-sedentary group (Sham-Sed), Sham-exercised group (Sham-Ex), 2VO-sedentary group (2VO-Sed), and 2VO-exercised group (2VO-Ex). The early intervention with physical exercise started 3 days after 2VO or Sham surgery during 12 weeks. Then, the brain functional capillary density and endothelial-leukocyte interactions were evaluated by intravital microscopy; cognitive function was evaluated by open-field test; hippocampus postsynaptic density protein 95 and synaptophysin were evaluated by western blotting; astrocytic coverage of the capillaries, microglial activation, and structural capillary density were evaluated by immunohistochemistry. RESULTS: Early moderate physical exercise was able to normalize functional capillary density and reduce leukocyte rolling in the brain of animals with chronic cerebral hypoperfusion. These effects were accompanied by restore synaptic protein and the improvement of cognitive function. In addition, early moderate exercise improves astrocytes coverage in blood vessels of the cerebral cortex and hippocampus, decreases microglial activation in the hippocampus, and improves structural capillaries in the hippocampus. CONCLUSIONS: Microcirculatory and inflammatory changes in the brain appear to be involved in triggering a cognitive decline in animals with chronic cerebral ischemia. Therefore, early intervention with physical exercise may represent a preventive approach to neurodegeneration caused by chronic cerebral hypoperfusion.


Assuntos
Astrócitos/fisiologia , Circulação Cerebrovascular/fisiologia , Transtornos Cerebrovasculares/fisiopatologia , Microcirculação/fisiologia , Microvasos/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Transtornos Cerebrovasculares/terapia , Masculino , Microglia/fisiologia , Condicionamento Físico Animal/métodos , Distribuição Aleatória , Ratos , Ratos Wistar
12.
Planta Med ; 86(6): 395-404, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32168547

RESUMO

Echinodorus grandiflorus is a semiaquatic plant native to Brazil and belongs to the Alismataceae family. Infusion preparations of the leaves of this plant are often used due to its diuretic, blood pressure lowering, and anti-inflammatory properties. Our aim was to investigate the effects of chronic treatment with the crude hydroalcoholic extract of E. grandiflorus on central and peripheral microvascular changes induced in a model of hypertension and diabetes. The hemodynamic and microvascular effects of E. grandiflorus extract (50, 100, or 200 mg/kg/day for 28 days) or the isolated major diterpene from E. grandiflorus (3 to 10 mg/kg i. v.) were evaluated in spontaneously hypertensive rats using tail plethysmography and intravital fluorescence videomicroscopy, respectively, and were compared to vehicle-treated normotensive Wistar-Kyoto rats. We also investigated the protective effects of chronic treatment with E. grandiflorus (100 mg/kg/day) in brain capillary density and leukocyte-endothelium interactions on the brain vessels of DM-spontaneously (DM: diabetes mellitus) hypertensive rats. Chronically treating spontaneously hypertensive rats with increasing doses of crude hydroalcoholic E. grandiflorus extract resulted in significant dose-dependent reductions in systolic blood pressure and an anti-inflammatory effect on the brain microcirculation of DM-spontaneously hypertensive rat animals. Using laser speckle contrast imaging, we observed that intravenous administration of the major isolated clerodane diterpene metabolite (1 - 10 mg/kg) increased microvascular blood flow by 25% in spontaneously hypertensive rat skeletal muscle. The results of this study show that E. grandiflorus extracts can be useful in the prevention and reduction of microcirculatory damage in arterial hypertension and other diseases that involve microvascular dysfunction.


Assuntos
Alismataceae , Hipertensão , Animais , Pressão Sanguínea , Brasil , Microcirculação , Extratos Vegetais , Folhas de Planta , Ratos
13.
PLoS One ; 14(12): e0224610, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31869339

RESUMO

Malaria is an infectious disease of major worldwide clinical importance that causes a variety of severe, or complicated, syndromes including cerebral malaria, which is often fatal. Leukocyte integrins are essential for host defense but also mediate physiologic responses of the innate and adaptive immune systems. We previously showed that targeted deletion of the αD subunit (αD-/-) of the αDß2 integrin, which is expressed on key leukocyte subsets in mice and humans, leads to absent expression of the integrin heterodimer on murine macrophages and reduces mortality in mice infected with Plasmodium berghei ANKA (P. berghei ANKA). To further identify mechanisms involved in the protective effect of αD deletion in this model of severe malaria we examined wild type C57BL/6 (WT) and αD-/- mice after P. berghei ANKA infection and found that vessel plugging and leukocyte infiltration were significantly decreased in the brains of αD-/- animals. Intravital microscopy demonstrated decreased rolling and adhesion of leukocytes in cerebral vessels of αD-/- mice. Flow cytometry analysis showed decreased T-lymphocyte accumulation in the brains of infected αD-/- animals. Evans blue dye exclusion assays demonstrated significantly less dye extravasation in the brains of αD-/- mice, indicating preserved blood-brain barrier integrity. WT mice that were salvaged from P. berghei ANKA infection by treatment with chloroquine had impaired aversive memory, which was not observed in αD-/- mice. We conclude that deletion of integrin αDß2 alters the natural course of experimental severe malaria, demonstrating previously unrecognized activities of a key leukocyte integrin in immune-inflammatory responses that mediate cerebral involvement.


Assuntos
Antígenos CD11/metabolismo , Cadeias alfa de Integrinas/metabolismo , Malária/fisiopatologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Edema Encefálico/metabolismo , Edema Encefálico/fisiopatologia , Antígenos CD11/fisiologia , Cloroquina/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Cadeias alfa de Integrinas/fisiologia , Integrinas/imunologia , Integrinas/metabolismo , Contagem de Leucócitos , Leucócitos/metabolismo , Leucócitos/fisiologia , Macrófagos/metabolismo , Malária/genética , Malária Cerebral/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium berghei/metabolismo
14.
Sci Rep ; 9(1): 13621, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541129

RESUMO

Cerebral malaria pathogenesis involves vascular dysfunction with low nitric oxide (NO) bioavailability, vasoconstriction and impaired vasodilation, leading to ischemia, tissue hypoxia and ultimately death. Cerebral blood flow (CBF) involves NO and other pathways, including arachidonic acid (AA)-derived metabolites. Here we show that mice with experimental cerebral malaria (ECM) by P. berghei ANKA showed marked decreases in CBF (as assessed by laser speckle contrast imaging - LSCI) and that administration of L-arginine supplementation (50 mg/kg) and/or of the thromboxane synthase inhibitor Ozagrel (100 mg/kg) induced immediate increases in CBF. L-arginine in combination with artesunate (32 mg/kg) induced immediate reversal of brain ischemia in the short-term (1 hour), but the effect subsided after 3 and 6 hours. Neither L-arginine nor Ozagrel reversed blood brain barrier breakdown. Mice with ECM showed brain levels of selected AA-derived metabolites with a vasoconstrictor profile, with increased levels of 8-isoprostanes, 20-HETE and 14,15-DHET, whereas mice infected with a non-ECM-inducing strain of P. berghei (NK65) showed a vasodilator profile, with normal levels of 20-HETE and 14,15-DHET and increased levels of PGE2. L-arginine is capable of partially reversing cerebral ischemia and AA metabolites may play a role in the cerebrovascular dysfunction in ECM.


Assuntos
Arginina/farmacologia , Circulação Cerebrovascular/efeitos dos fármacos , Malária Cerebral/patologia , Animais , Arginina/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/patologia , Suplementos Nutricionais , Feminino , Malária Cerebral/metabolismo , Metacrilatos/metabolismo , Metacrilatos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/efeitos dos fármacos , Tromboxano-A Sintase/antagonistas & inibidores , Tromboxano-A Sintase/metabolismo , Tromboxanos/antagonistas & inibidores , Tromboxanos/metabolismo , Vasoconstrição/efeitos dos fármacos
15.
J Clin Med ; 8(5)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083472

RESUMO

Peripheral arterial disease (PAD), leading to intermittent claudication, critical ischemia with rest pain, and/or tissue damage, is a public health issue associated with significant morbidity and mortality. Little is known about the link between PAD, cognitive function, and whether exercise might reduce cognitive dysfunction in PAD patients, as previously observed concerning both quality of life and prognosis. This review highlights the fact that patients suffering from PAD often demonstrate cognitive dysfunction characterized by reduced performance in nonverbal reasoning, reduced verbal fluency, and decreased information processing speed and a greater risk for progression toward dementia. Further, the data presented support that physical exercise, likely through myokine secretion and microglial anti-inflammatory phenotype enhancement, might participate in the cognition protection in common clinical settings.

16.
Oxid Med Cell Longev ; 2018: 6053492, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538802

RESUMO

The Mediterranean diet, rich in olive oil, is beneficial, reducing the risk of cardiovascular diseases and cancer. Olive oil is mostly composed of the monounsaturated fatty acid omega-9. We showed omega-9 protects septic mice modulating lipid metabolism. Sepsis is initiated by the host response to infection with organ damage, increased plasma free fatty acids, high levels of cortisol, massive cytokine production, leukocyte activation, and endothelial dysfunction. We aimed to analyze the effect of omega-9 supplementation on corticosteroid unbalance, inflammation, bacterial elimination, and peroxisome proliferator-activated receptor (PPAR) gamma expression, an omega-9 receptor and inflammatory modulator. We treated mice for 14 days with omega-9 and induced sepsis by cecal ligation and puncture (CLP). We measured systemic corticosterone levels, cytokine production, leukocyte and bacterial counts in the peritoneum, and the expression of PPAR gamma in both liver and adipose tissues during experimental sepsis. We further studied omega-9 effects on leukocyte rolling in mouse cremaster muscle-inflamed postcapillary venules and in the cerebral microcirculation of septic mice. Here, we demonstrate that omega-9 treatment is associated with increased levels of the anti-inflammatory cytokine IL-10 and decreased levels of the proinflammatory cytokines TNF-α and IL-1ß in peritoneal lavage fluid of mice with sepsis. Omega-9 treatment also decreased systemic corticosterone levels. Neutrophil migration from circulation to the peritoneal cavity and leukocyte rolling on the endothelium were decreased by omega-9 treatment. Omega-9 also decreased bacterial load in the peritoneal lavage and restored liver and adipose tissue PPAR gamma expression in septic animals. Our data suggest a beneficial anti-inflammatory role of omega-9 in sepsis, mitigating leukocyte rolling and leukocyte influx, balancing cytokine production, and controlling bacterial growth possibly through a PPAR gamma expression-dependent mechanism. The significant reduction of inflammation detected after omega-9 enteral injection can further contribute to the already known beneficial properties facilitated by unsaturated fatty acid-enriched diets.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/fisiopatologia , Ácido Oleico/farmacologia , Sepse/fisiopatologia , Animais , Quimiotaxia de Leucócito/efeitos dos fármacos , Modelos Animais de Doenças , Migração e Rolagem de Leucócitos/efeitos dos fármacos , Camundongos , Azeite de Oliva/química
17.
Am J Pathol ; 188(11): 2674-2687, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30121257

RESUMO

Toxoplasmosis is one of the leading parasitic diseases worldwide. Some data suggest that chronic acquired toxoplasmosis could be linked to behavioral alterations in humans. The parasite infects neurons, forming immunologically silent cysts. Cerebral microcirculation homeostasis is determinant to brain functions, and pathologic states can alter capillarity or blood perfusion, leading to neurodegeneration and cognitive deficits. Albino mice were infected with Toxoplasma gondii (ME49 strain) and analyzed after 10, 40, and 180 days. Infected mice presented decreased cerebral blood flow at 10 and 40 days post infection (dpi), which were restored at 180 dpi, as shown by laser speckle contrast imaging. Intravital microscopy demonstrated that infection led to significant capillary rarefaction, accompanied by neuroinflammation, with microglial activation and increased numbers of rolling and adherent leukocytes to the wall of cerebral capillaries. Acetylcholine-induced vasodilation was altered at all time points, and blood brain barrier permeability was evident in infected animals at 40 dpi. Infection reduced angiogenesis, with a decreased number of isolectin B4-stained blood vessels and a decrease in length and branching of laminin-stained capillaries. Sulfadiazine reduced parasite load and partially repaired microvascular damages. We conclude that T. gondii latent infection causes a harmful insult in the brain, promoting neuroinflammation and microcirculatory dysfunction in the brain, with decreased angiogenesis and can contribute to a neurodegenerative process.


Assuntos
Barreira Hematoencefálica/patologia , Endotélio Vascular/patologia , Inflamação/patologia , Microcirculação , Neurônios/patologia , Toxoplasma/patogenicidade , Toxoplasmose Cerebral/patologia , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/parasitologia , Endotélio Vascular/imunologia , Endotélio Vascular/parasitologia , Feminino , Inflamação/imunologia , Inflamação/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/imunologia , Neurônios/parasitologia , Toxoplasmose Cerebral/imunologia , Toxoplasmose Cerebral/parasitologia
18.
Microcirculation ; 24(8)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28865157

RESUMO

OBJECTIVE: We investigated the acute effects of SIM on cerebral microvascular rarefaction and dysfunction in SHRs. METHODS: Male WKY and SHRs were divided into 4 groups of 8 animals each: WKY-CTL and SHR-CTL, treated with 0.9% saline; and WKY+SIM and SHR+SIM, treated with SIM (30 mg/kg/d) for 3 days by gavage. Cerebral FCD was assessed by intravital fluorescence videomicroscopy. mCBF before and after administration within the cranial window of angiotensin II (1 µmol L-1 ) was investigated using laser speckle contrast imaging. RESULTS: Cerebral FCD was reduced in SHR-CTL compared to WKY-CTL (P < .05). SIM increased cerebral FCD in SHRs compared to SHR-CTL (P < .05). The mCBF was reduced in SHR-CTL compared to WKY-CTL (P < .05), and SIM increased mCBF compared with SHR-CTL (P < .05). Angiotensin II elicited a reduction of mCBF in SHR-CTL and increased mCBF in WKY-CTL (SHR-CTL -13.53 ± 2% vs WKY-CTL +13.74 ± 4%; P < .001), which was attenuated in SHRs treated with SIM (SHR+SIM -6.7 ± 1% vs SHR-CTL -13.53 ± 2%; P < .01). CONCLUSIONS: The antihypertensive effect of SIM is associated with an improvement in cerebral microvascular perfusion and capillary density that may help to prevent hypertension-induced cerebrovascular damage independent of cholesterol-lowering.


Assuntos
Angiotensina II/farmacologia , Circulação Cerebrovascular/efeitos dos fármacos , Hipertensão/fisiopatologia , Microcirculação/efeitos dos fármacos , Sinvastatina/farmacologia , Animais , Modelos Animais de Doenças , Hipertensão/tratamento farmacológico , Hipertensão/patologia , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
19.
BMC Neurosci ; 18(1): 67, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28886695

RESUMO

BACKGROUND: Metabolic syndrome (MetS) is associated with an increased risk of cerebrovascular diseases, including cerebral ischemia. Microvascular dysfunction is an important feature underlying the pathophysiology of cerebrovascular diseases. In this study, we aimed to investigate the impacts of ischemia and reperfusion (IR) injury on the cerebral microvascular function of rats with high-fat diet-induced MetS. RESULTS: We examined Wistar rats fed a high-fat diet (HFD) or normal diet (CTL) for 20 weeks underwent 30 min of bilateral carotid artery occlusion followed by 1 h of reperfusion (IR) or sham surgery. Microvascular blood flow was evaluated on the parietal cortex surface through a cranial window by laser speckle contrast imaging, functional capillary density, endothelial function and endothelial-leukocyte interactions by intravital videomicroscopy. Lipid peroxidation was assessed by TBARs analysis, the expression of oxidative enzymes and inflammatory markers in the brain tissue was analyzed by real-time PCR. The cerebral IR in MetS animals induced a functional capillary rarefaction (HFD IR 117 ± 17 vs. CTL IR 224 ± 35 capillary/mm2; p < 0.05), blunted the endothelial response to acetylcholine (HFD IR -16.93% vs. CTL IR 16.19% from baseline inner diameter p < 0.05) and increased the endothelial-leukocyte interactions in the venules in the brain. The impact of ischemia on the cerebral microvascular blood flow was worsened in MetS animals, with a marked reduction of cerebral blood flow, exposing brain tissue to a higher state of hypoxia. CONCLUSIONS: Our results demonstrate that during ischemia and reperfusion, animals with MetS are more susceptible to alterations in the cerebral microcirculation involving endothelial dysfunction and oxidative stress events.


Assuntos
Isquemia Encefálica/fisiopatologia , Dieta Hiperlipídica , Síndrome Metabólica/fisiopatologia , Traumatismo por Reperfusão/fisiopatologia , Animais , Circulação Cerebrovascular/fisiologia , Microcirculação/fisiologia , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reperfusão/métodos
20.
Metab Syndr Relat Disord ; 15(1): 26-35, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27929741

RESUMO

BACKGROUND: We aimed to investigate the effects of chronic oral treatment with centrally acting antihypertensive drugs, such as clonidine (CLO), an α2-adrenoceptor agonist, or LNP599, a selective I1 imidazoline receptor agonist, on brain microvascular function in rats with high-fat diet (HFD)-induced metabolic syndrome. METHODS: Male Wistar Kyoto rats were maintained on a normal diet (CON) or a HFD for 20 weeks. After this period, the HFD group received oral CLO (0.1 mg/kg), LNP599 (20 mg/kg), or vehicle daily for 4 weeks. Systolic blood pressure and heart rate (HR) were evaluated by photoplethysmography. Functional capillary density, endothelial function, and endothelial-leukocyte interactions in the brain were investigated by intravital video microscopy. Cerebral microcirculatory flow was evaluated by laser speckle contrast imaging. Brain tissue endothelial nitric oxide synthase, oxidative enzyme, and inflammatory marker expression levels were analyzed. RESULTS: Metabolic syndrome decreased brain functional capillary density and microvascular blood perfusion, changes accompanied by deficient brain microcirculation vasodilatory responses to acetylcholine. Significant numbers of rolling and adherent leukocytes were also observed in the brain venules. Chronic sympathetic inhibition with clonidine and LNP599 reduced blood pressure and HR. These effects were accompanied by reversals of cerebral capillary rarefaction, improvements in cerebral microvascular blood flow and endothelial function, and decreases in endothelial-leukocyte interactions in the cerebral venules. CONCLUSIONS: Our results suggest that central sympathetic inhibition exerts beneficial effects by increasing perfusion and reducing inflammatory marker expression and oxidative stress in the brains of rats with metabolic syndrome. Centrally acting antihypertensive drugs may be helpful in regulating cerebral microcirculatory function and vascular inflammation in metabolic syndrome.


Assuntos
Anti-Hipertensivos/farmacologia , Circulação Cerebrovascular/efeitos dos fármacos , Síndrome Metabólica/tratamento farmacológico , Compostos de Anilina/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Clonidina/farmacologia , Dieta Hiperlipídica/efeitos adversos , Mediadores da Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/fisiopatologia , Microcirculação/efeitos dos fármacos , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Pirróis/farmacologia , Ratos , Ratos Endogâmicos WKY , Simpatolíticos/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...