Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 88(6): e0211321, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35196140

RESUMO

Many children spend considerable time in daycare centers and may be influenced by the indoor microorganisms there, including fungi. In this study, we investigate the indoor mycobiomes of 125 daycare centers distributed along strong environmental gradients throughout Norway. Dust samples were collected from doorframes outside and inside buildings using a community science sampling approach. Fungal communities in the dust samples were analyzed using DNA metabarcoding of the internal transcribed spacer 2 (ITS2) region. We observed a marked difference between the outdoor and indoor mycobiomes. The indoor mycobiomes included considerably more yeasts and molds than the outdoor samples, with Saccharomyces, Mucor, Malassezia, and Penicillium being among the most dominant fungal genera. Changes in the indoor fungal richness and composition correlated with numerous variables related to both outdoor and indoor conditions; there was a clear geographic structure in the indoor mycobiome composition that mirrored the outdoor climate, ranging from humid areas in western Norway to drier and colder areas in eastern Norway. Moreover, the number of children in the daycare centers, as well as various building features, influenced the indoor mycobiome composition. We conclude that the indoor mycobiomes in Norwegian daycare centers are structured by multiple factors and are dominated by yeasts and molds. This study exemplifies how community science sampling enables DNA-based analyses of a high number of samples covering wide geographic areas. IMPORTANCE With an alarming increase in chronic diseases like childhood asthma and allergies, there is an increased focus on the exposure of young children to indoor biological and chemical air pollutants. Our study of 125 daycares throughout Norway demonstrates that the indoor mycobiome not only reflects cooccurring outdoor fungi but also includes a high abundance of yeast and mold fungi with an affinity for indoor environments. A multitude of factors influence the indoor mycobiomes in daycares, including the building type, inhabitants, as well as the outdoor environment. Many of the detected yeasts and molds are likely associated with the human body, where some have been coupled with allergies and respiratory problems. Our results call for further studies investigating the potential impact of the identified daycare-associated mycobiomes on children's health.


Assuntos
Poluição do Ar em Ambientes Fechados , Micobioma , Poluição do Ar em Ambientes Fechados/análise , Criança , Pré-Escolar , Poeira/análise , Monitoramento Ambiental/métodos , Fungos/genética , Humanos
2.
Microbiome ; 9(1): 220, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753520

RESUMO

BACKGROUND: Children spend considerable time in daycare centers in parts of the world and are exposed to the indoor micro- and mycobiomes of these facilities. The level of exposure to microorganisms varies within and between buildings, depending on occupancy, climate, and season. In order to evaluate indoor air quality, and the effect of usage and seasonality, we investigated the spatiotemporal variation in the indoor mycobiomes of two daycare centers. We collected dust samples from different rooms throughout a year and analyzed their mycobiomes using DNA metabarcoding. RESULTS: The fungal community composition in rooms with limited occupancy (auxiliary rooms) was similar to the outdoor samples, and clearly different from the rooms with higher occupancy (main rooms). The main rooms had higher abundance of Ascomycota, while the auxiliary rooms contained comparably more Basidiomycota. We observed a strong seasonal pattern in the mycobiome composition, mainly structured by the outdoor climate. Most markedly, basidiomycetes of the orders Agaricales and Polyporales, mainly reflecting typical outdoor fungi, were more abundant during summer and fall. In contrast, ascomycetes of the orders Saccharomycetales and Capnodiales were dominant during winter and spring. CONCLUSIONS: Our findings provide clear evidences that the indoor mycobiomes in daycare centers are structured by occupancy as well as outdoor seasonality. We conclude that the temporal variability should be accounted for in indoor mycobiome studies and in the evaluation of indoor air quality of buildings. Video abstract.


Assuntos
Poluição do Ar em Ambientes Fechados , Micobioma , Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/análise , Criança , Poeira/análise , Monitoramento Ambiental , Fungos/genética , Humanos , Estações do Ano
3.
Mol Ecol ; 30(11): 2689-2705, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33830574

RESUMO

In the built environment, fungi can cause important deterioration of building materials and have adverse health effects on occupants. Increased knowledge about indoor mycobiomes from different regions of the world, and their main environmental determinants, will enable improved indoor air quality management and identification of health risks. This is the first citizen science study of indoor mycobiomes at a large geographical scale in Europe, including 271 houses from Norway and 807 dust samples from three house compartments: outside of the building, living room and bathroom. The fungal community composition determined by DNA metabarcoding was clearly different between indoor and outdoor samples, but there were no significant differences between the two indoor compartments. The 32 selected variables, related to the outdoor environment, building features and occupant characteristics, accounted for 15% of the overall variation in community composition, with the house compartment as the key factor (7.6%). Next, climate was the main driver of the dust mycobiomes (4.2%), while building and occupant variables had significant but minor influences (1.4% and 1.1%, respectively). The house-dust mycobiomes were dominated by ascomycetes (⁓70%) with Capnodiales and Eurotiales as the most abundant orders. Compared to the outdoor samples, the indoor mycobiomes showed higher species richness, which is probably due to the mixture of fungi from outdoor and indoor sources. The main indoor indicator fungi belonged to two ecological groups with allergenic potential: xerophilic moulds and skin-associated yeasts. Our results suggest that citizen science is a successful approach for unravelling the built microbiome at large geographical scales.


Assuntos
Ciência do Cidadão , Micobioma , Poeira/análise , Europa (Continente) , Fungos/genética , Micobioma/genética , Noruega
4.
Mol Ecol Resour ; 21(4): 1141-1148, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33459491

RESUMO

DNA metabarcoding has become a powerful approach for analysing complex communities from environmental samples, but there are still methodological challenges limiting its full potential. While conserved DNA markers, like 16S and 18S, often are not able to discriminate among closely related species, other more variable markers - like the fungal ITS region, may include considerable intraspecific variation, which can lead to oversplitting of species during DNA metabarcoding analyses. Here we assessed the effects of intraspecific sequence variation in DNA metabarcoding by analysing local populations of eleven fungal species. We investigated the allelic diversity of ITS2 haplotypes using both Sanger sequencing and high throughput sequencing (HTS) coupled with error correction with the software dada2. All the eleven species, except one, included some level of intraspecific variation in the ITS2 region. Overall, we observed a high correspondence between haplotypes generated by Sanger sequencing and HTS, with the exception of a few additional haplotypes detected using either approach. These extra haplotypes, typically occurring in low frequencies, were probably due to PCR and sequencing errors or intragenomic variation in the rDNA region. The presence of intraspecific (and possibly intragenomic) variation in ITS2 suggest that haplotypes (or ASVs) should not be used as basic units in ITS-based fungal community analyses, but an extra clustering step is needed to approach species-level resolution.


Assuntos
Código de Barras de DNA Taxonômico , Fungos/classificação , Alelos , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Fungos/genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Software
5.
Pediatr Res ; 82(5): 829-838, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28665922

RESUMO

BackgroundThe preterm infant gut microbiota is vulnerable to different biotic and abiotic factors. Although the development of this microbiota has been extensively studied, the mobilome-i.e. the mobile genetic elements (MGEs) in the gut microbiota-has not been considered. Therefore, the aim of this study was to investigate the association of the mobilome with birth weight and hospital location in the preterm infant gut microbiota.MethodsThe data set consists of fecal samples from 62 preterm infants with and without necrotizing enterocolitis (NEC) from three different hospitals. We analyzed the gut microbiome by using 16S rRNA amplicon sequencing, shot-gun metagenome sequencing, and quantitative PCR. Predictive models and other data analyses were performed using MATLAB and QIIME.ResultSThe microbiota composition was significantly different between NEC-positive and NEC-negative infants and significantly different between hospitals. An operational taxanomic unit (OTU) showed strong positive and negative correlation with NEC and birth weight, respectively, whereas none showed significance for mode of delivery. Metagenome analyses revealed high levels of conjugative plasmids with MGEs and virulence genes. Results from quantitative PCR showed that the plasmid signature genes were significantly different between hospitals and in NEC-positive infants.ConclusionOur results point toward an association of the mobilome with hospital location in preterm infants.


Assuntos
Peso ao Nascer , DNA Bacteriano/genética , Enterocolite Necrosante/microbiologia , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso , Sequências Repetitivas Dispersas , Nascimento Prematuro/microbiologia , Estudos de Casos e Controles , Biologia Computacional , Bases de Dados Genéticas , Enterocolite Necrosante/diagnóstico , Enterocolite Necrosante/epidemiologia , Fezes/microbiologia , Feminino , Genoma Bacteriano , Idade Gestacional , Humanos , Recém-Nascido , Masculino , Metagenoma , Metagenômica/métodos , Nascimento Prematuro/diagnóstico , Nascimento Prematuro/epidemiologia , Ribotipagem , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...