Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 11(1): 39-49, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28401700

RESUMO

Microbial electrochemical technologies (METs) rely on the control of interactions between microorganisms and electronic devices, enabling to transform chemical energy into electricity. We report a new approach to construct ready-to-use artificial bioelectrodes by immobilizing Geobacter sulfurreducens cells in composite materials associating silica gel and carbon felt fibres. Viability test confirmed that the majority of bacteria (ca. 70 ± 5%) survived the encapsulation process in silica and that cell density did not increase in 96 h. The double entrapment within the silica-carbon composite prevented bacterial release from the electrode but allowed a suitable mass transport (ca. 5 min after electron donor pulse), making the electrochemical characterization of the system possible. The artificial bioelectrodes were evaluated in three-electrode reactors and the maximum current displayed was ca. 220 and 150 µA cm-3 using acetate and lactate as electron donors respectively. Cyclic voltammetry of acetate-fed bioelectrodes revealed a sigmoidal catalytic oxidation wave, typical of more advanced-stage biofilms. The presence of G. sulfurreducens within composites was ascertained by SEM analysis, suggesting that only part of the bacterial population was in direct contact with the carbon fibres. Preliminary analyses of the transcriptomic response of immobilized G. sulfurreducens enlightened that encapsulation mainly induces an osmotic stress to the cells. Therefore, ready-to-use artificial bioelectrodes represent a versatile time- and cost-saving strategy for microbial electrochemical systems.


Assuntos
Fontes de Energia Bioelétrica , Carbono , Células Imobilizadas/metabolismo , Eletrodos/microbiologia , Geobacter/metabolismo , Sílica Gel , Eletricidade , Perfilação da Expressão Gênica , Geobacter/genética , Metabolismo , Viabilidade Microbiana , Pressão Osmótica
2.
Environ Microbiol Rep ; 7(2): 219-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25348891

RESUMO

The ability of Geobacter species to transfer electrons outside the cell enables them to play an important role in a number of biogeochemical and bioenergy processes. Gene deletion studies have implicated periplasmic and outer-surface c-type cytochromes in this extracellular electron transfer. However, even when as many as five c-type cytochrome genes have been deleted, some capacity for extracellular electron transfer remains. In order to evaluate the role of c-type cytochromes in extracellular electron transfer, Geobacter sulfurreducens was grown in a low-iron medium that included the iron chelator (2,2'-bipyridine) to further sequester iron. Haem-staining revealed that the cytochrome content of cells grown in this manner was 15-fold lower than in cells exposed to a standard iron-containing medium. The low cytochrome abundance was confirmed by in situ nanoparticle-enhanced Raman spectroscopy (NERS). The cytochrome-depleted cells reduced fumarate to succinate as well as the cytochrome-replete cells do, but were unable to reduce Fe(III) citrate or to exchange electrons with a graphite electrode. These results demonstrate that c-type cytochromes are essential for extracellular electron transfer by G. sulfurreducens. The strategy for growing cytochrome-depleted G. sulfurreducens will also greatly aid future physiological studies of Geobacter species and other microorganisms capable of extracellular electron transfer.


Assuntos
Citocromos c/metabolismo , Transporte de Elétrons , Geobacter/metabolismo , Meios de Cultura/química , Eletrodos , Compostos Férricos/metabolismo , Fumaratos/metabolismo , Grafite/metabolismo , Oxirredução , Análise Espectral Raman , Coloração e Rotulagem , Ácido Succínico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...