Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trop Life Sci Res ; 34(2): 223-241, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38144382

RESUMO

Cryptocarya pulchrinervia is an Indonesian indigenous plant that grows in Sumatra, Kalimantan and Papua. One of the new compounds extracted from this plant was cryptobrachytone C, which was known to be cytotoxic against cancer cells of Murine leukemia P388 with IC50 10.52 µM. In this study, the cytotoxicity and anticancer properties of cryptobrachytone C on proliferation, apoptosis, migration and clone formation of MCF-7 and T47D breast cancer cell lines were examined, which had not previously been done before. The cytotoxicity of the compound was measured using an MTT (3- (4,5-dimethylthiazol-2- yl) -2,5-di-phenyl-tetrazolium bromide) assay. The cell proliferation was measured using a BrdU assay, and the cell apoptosis was measured using annexin-V FITC, while the cell migration was measured using a transwell filter. The cytotoxic test result demonstrated that cryptobrachytone C was cytotoxic against MCF-7 cells with IC50 12.94 ± 0.32 µM but not against T47D cells with IC50 65.33 ± 2.33 µM nor against normal MRC-5 cells with IC50 122.57 ± 19.84 µM. The cell proliferation assay showed that cryptobrachytone C at IC50 concentration had antiproliferative properties against MCF-7 cancer cell lines (p < 0.05) but did not significantly reduce T47D cell proliferation (p < 0.07). Although the results of the cell apoptosis test showed that cryptobrachytone C could induce the apoptosis of the MCF-7 and T47D cells, it was insignificant (p > 0.05). The cell migration test showed that cryptobrachytone at IC50 concentrations could inhibit the migration of the MCF-7 and T47D cells. The clonogenic test showed that cryptobrachytone C at IC50 concentration can induce the inhibition of the formation of MCF-7 and T47D cell colonies. The cryptobrachytone C anti-cancer character was more signi icant on the MCF-7 cell line compared to the T47D. This study showed that cryptobrachytone C was cytotoxic and had potential as an anti-cancer compound against MCF-7 and T47D breast cancer cell lines.

2.
Heliyon ; 7(4): e06725, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33948505

RESUMO

Agarwood forms in the heartwood of trees in the family Thymelaeaceae in response to wounding, infection, or other stresses. Its formation is random and takes decades in natural populations, which are harvested for their aromatic compounds. This harvest has led to declining population, and many agarwood producing trees are considered endangered. Therefore, an alternative source would be desirable. We established an in vitro shoot culture method for one agarwood species, Aquillaria malaccensis. Agarwood production was elicited by introducing methyl jasmonate (MeJA) and crude extracts of Fusarium solani into the liquid culture medium. A high concentration of MeJA resulted in necrotic shoot tissue, while application of the crude extracts had no effect on growth of the shoots. Interestingly, gas chromatography-mass spectrometry (GC-MS) analysis of MeJA-treated shoots revealed the presence of several agarwood compounds, including sesquiterpenes and chromone derivative. In addition, GC-MS analysis of shoot-treated with the extracts revealed the presence of alkanes, aromatic compounds, and fatty acid derivatives. It may be that different elicitors induce the production of different compounds in A. malaccensis in vitro shoot cultures and could be used to manipulate the accumulation of different products in culture.

3.
Noncoding RNA Res ; 6(1): 42-50, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33778217

RESUMO

The diverse roles of non-coding RNA and DNA in cross-species communication is yet to be revealed. Once thought to only involve intra-specifically in regulating gene expression, the evidence that these genetic materials can also modulate gene expression between species that belong to different kingdoms is accumulating. Plants send small RNAs to the pathogen or parasite when they are being attacked, targeting essential mRNAs for infection or parasitism of the hosts. However, the same survival mechanism is also deployed by the pathogen or parasite to destabilize plant immune responses. In plants, it is suggested that exposure to extracellular self-DNA impedes growth, while to extracellular non-self-DNA induces the modulation of reactive oxygen species, expression of resistance related genes, epigenetic mechanism, or suppression of disease severity. Exploring the potential of secreted RNA and extracellular DNA as a green pesticide could be a promising alternative if we are to provide food for the future global population without further damaging the environment. Hence, some studies on plant secreted RNA and responses towards extracellular DNA are discussed in this review. The precise mode of action of entry and the following cascade of signaling once the plant cell is exposed to secreted RNA or extracellular DNA could be an interesting topic for future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...