Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21347, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37908711

RESUMO

In the quest for sustainable waste management solutions, this study explores the integration of ultrasonic pretreatment as a preparatory step for the anaerobic digestion of landfill leachate. Employing response surface methodology (RSM) coupled with central composite design (CCD), we systematically optimize the process parameters, including pH, inoculum volume, and ultrasonic pretreatment duration, to maximize the yield of bio-methane potential (ml CH4/g VS). The results demonstrate the effective application of RSM-CCD for predicting and modelling methane generation, with a highly significant model (R2 = 0.899). The optimized conditions reveal a remarkable biomethane potential of 177 ml CH4/g VS. Additionally, this study contributes to the understanding of the positive effect of ultrasound pretreatment on the anaerobic digestion of landfill leachate, and the quality of the digestate obtained after anaerobic digestion was studied and different valorisations were proposed.

2.
Int J Biol Macromol ; 239: 124373, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028622

RESUMO

In this study, quartz sand (QS) incorporated into a crosslinked chitosan-glutaraldehyde matrix (QS@Ch-Glu) was prepared and employed as an efficient adsorbent for the elimination of Orange G (OG) dye from water. The sorption process is adequately described by the pseudo-second order kinetic model and the Langmuir isotherm model with maximum adsorption capacities of 172.65, 188.18, and 206.65mg/g at 25, 35, and 45°C, respectively. A statistical physics model was adopted to elucidate the adsorption mechanism of OG on QS@Ch-Glu. Calculated thermodynamic factors revealed that the adsorption of OG is endothermic, spontaneous, and occurs via physical interactions. Overall, the proposed adsorption mechanism was based on electrostatic attractions, n-π stacking interaction, hydrogen bonding interaction, and Yoshida hydrogen bonding. The adsorption rate of QS@Ch-Glu was still above 95% even after 6 cycles of adsorption and desorption. Furthermore, QS@Ch-Glu demonstrated high efficiency in real water samples. All these findings demonstrate that QS@Ch-Glu is qualified for practical applications.


Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Glutaral , Areia , Quartzo , Concentração de Íons de Hidrogênio , Termodinâmica , Água , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...