Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 599(11): 2933-2951, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33651437

RESUMO

KEY POINTS: NMDA receptors (NMDARs) expressed by dopamine neurons of the ventral tegmental area (VTA) play a central role in glutamate synapse plasticity, neuronal firing and adaptative behaviours. The NMDAR surface dynamics shapes synaptic adaptation in hippocampal networks, as well as associative memory. We investigated the basic properties and role of the NMDAR surface dynamics on cultured mesencephalic and VTA dopamine neurons in rodents. Using a combination of single molecule imaging and electrophysiological recordings, we demonstrate that NMDARs are highly diffusive at the surface of mesencephalic dopamine neurons. Unexpectedly, the NMDAR membrane dynamics per se regulates the firing pattern of VTA dopaminergic neurons, probably through a functional interplay between NMDARs receptors and small-conductance calcium-dependent potassium (SK) channels. ABSTRACT: Midbrain dopaminergic (DA) neurons play a central role in major physiological brain functions, and their dysfunctions have been associated with neuropsychiatric diseases. The activity of midbrain DA neurons is controlled by ion channels and neurotransmitter receptors, such as the glutamate NMDA receptor (NMDAR) and small-conductance calcium-dependent potassium (SK) channels. However, the cellular mechanisms through which these channels tune the firing pattern of midbrain DA neurons remain unclear. Here, we investigated whether the surface dynamics and distribution of NMDARs tunes the firing pattern of midbrain DA neurons. Using a combination of single molecule imaging and electrophysiological recordings, we report that NMDARs are highly diffusive at the surface of cultured midbrain DA neurons from rodents and humans. Reducing acutely the NMDAR membrane dynamics, which leaves the ionotropic function of the receptor intact, robustly altered the firing pattern of midbrain DA neurons without altering synaptic glutamatergic transmission. The reduction of NMDAR surface dynamics reduced apamin (SK channel blocker)-induced firing change and the distribution of SK3 channels in DA neurons. Together, these data show that the surface dynamics of NMDAR, and not solely its ionotropic function, tune the firing pattern of midbrain DA neurons partly through a functional interplay with SK channel function.


Assuntos
Neurônios Dopaminérgicos , Receptores de N-Metil-D-Aspartato , Potenciais de Ação , Apamina , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo , Receptores de N-Metil-D-Aspartato/metabolismo , Área Tegmentar Ventral
2.
Nat Commun ; 7: 10947, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26971573

RESUMO

Single-molecule imaging has changed the way we understand many biological mechanisms, particularly in neurobiology, by shedding light on intricate molecular events down to the nanoscale. However, current single-molecule studies in neuroscience have been limited to cultured neurons or organotypic slices, leaving as an open question the existence of fast receptor diffusion in intact brain tissue. Here, for the first time, we targeted dopamine receptors in vivo with functionalized quantum dots and were able to perform single-molecule tracking in acute rat brain slices. We propose a novel delocalized and non-inflammatory way of delivering nanoparticles (NPs) in vivo to the brain, which allowed us to label and track genetically engineered surface dopamine receptors in neocortical neurons, revealing inherent behaviour and receptor activity regulations. We thus propose a NP-based platform for single-molecule studies in the living brain, opening new avenues of research in physiological and pathological animal models.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Pontos Quânticos , Receptores Dopaminérgicos/metabolismo , Animais , Animais Recém-Nascidos , Antígeno CD11b/metabolismo , Eletroporação , Hipocampo/citologia , Imuno-Histoquímica , Injeções Intraventriculares , Microglia/metabolismo , Nanopartículas , Nanotecnologia/métodos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...