Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14717, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926546

RESUMO

Choosing appropriate tillage methods and applying the right amount of chemical fertilizers are pivotal for optimizing wheat management and enhancing wheat quality. This study investigated the influence of conservation agriculture and phosphorus levels on nutrient content, yield components, and quality traits of wheat in a corn-wheat rotation. Conducted over five years in field conditions, the study employed a randomized complete block design with tillage treatments (conventional tillage, CT; minimum tillage, MT; and no tillage, NT) and phosphorus levels (no fertilizer use, P0; and 100% fertilizer recommendation, PR) as factors. Soil samples were collected during the fourth year (2021-2022). Results revealed significant impacts of tillage methods and phosphorus levels on wheat straw and grain nutrient composition, yield components, and quality traits. Conventional tillage yielded the highest values for protein content (12%), Zeleny sedimentation volume (20.33 mL), hardness index (45), water absorption (64.12%), and wet gluten content (25.83%). Additionally, phosphorus fertilizer application positively influenced protein percentage, gluten weight, and gluten index. The study highlights the potential of strategic soil management, particularly conventional tillage combined with phosphorus fertilization, to enhance wheat quality and yield. By elucidating these relationships, the findings contribute to optimizing wheat cultivation practices and advancing the development of superior wheat cultivars for baking applications.


Assuntos
Fertilizantes , Fósforo , Triticum , Zea mays , Triticum/crescimento & desenvolvimento , Fósforo/análise , Fertilizantes/análise , Zea mays/crescimento & desenvolvimento , Grão Comestível/crescimento & desenvolvimento , Solo/química , Agricultura/métodos , Produção Agrícola/métodos
2.
Environ Res ; 255: 119138, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750999

RESUMO

The application of organic amendments is one way to manage low water irrigation in paddy soils. In this 60-day greenhouse pot experiment involving paddy soil undergoing drying-rewetting cycles, we examined the effects of two organic amendments: azo-compost with a low carbon to phosphorus ratio (C:P) of 40 and rice straw with a high C:P ratio of 202. Both were applied at rates of 1.5% of soil weight (w/w). The investigation focused on changes in certain soil biochemical characteristics related to C and P in the rice rhizosphere, as well as rice plant characteristics. The irrigation regimes applied in this study included constant soil moisture in a waterlogged state (130% water holding capacity (WHC)), mild drying-rewetting (from 130 to 100% WHC), and severe drying-rewetting (from 130 to 70% WHC). The results indicated that the application of amendments was effective in severe drying-rewetting irrigation regimes on soil characteristics. Drying-rewetting decreased soil respiration rate (by 60%), microbial biomass carbon (by 70%), C:P ratio (by 12%), soil organic P (by 16%), shoot P concentration (by 7%), and rice shoot biomass (by 30%). However, organic amendments increased soil respiration rate (by 8 times), soil microbial biomass C (51%), total C (TC) (53%), dissolved organic carbon (3 times), soil available P (AP) (100%), soil organic P (63%), microbial biomass P (4.5 times), and shoot P concentration (21%). The highest significant correlation was observed between dissolved organic carbon and total C (r= 0.89**). Organic amendments also increased P uptake by the rice plant in the order: azo-compost > rice straw > control treatments, respectively, and eliminated the undesirable effect of mild drying-rewetting irrigation regime on rice plant biomass. Overall, using suitable organic amendments proves promising for enhancing soil properties and rice growth under drying-rewetting conditions, highlighting the interdependence of P and C biochemical changes in the rhizosphere during the rice vegetative stage.


Assuntos
Irrigação Agrícola , Oryza , Solo , Oryza/crescimento & desenvolvimento , Irrigação Agrícola/métodos , Solo/química , Carbono/análise , Fósforo/análise , Água , Biomassa , Microbiologia do Solo
3.
Microbiol Res ; 281: 127602, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38228017

RESUMO

Indole-3-acetic acid (IAA), a fundamental phytohormone categorized under auxins, not only influences plant growth and development but also plays a critical role in plant-microbe interactions. This study reviews the role of IAA in bacteria-plant communication, with a focus on its biosynthesis, regulation, and the subsequent effects on host plants. Bacteria synthesize IAA through multiple pathways, which include the indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and several other routes, whose full mechanisms remain to be fully elucidated. The production of bacterial IAA affects root architecture, nutrient uptake, and resistance to various abiotic stresses such as drought, salinity, and heavy metal toxicity, enhancing plant resilience and thus offering promising routes to sustainable agriculture. Bacterial IAA synthesis is regulated through complex gene networks responsive to environmental cues, impacting plant hormonal balances and symbiotic relationships. Pathogenic bacteria have adapted mechanisms to manipulate the host's IAA dynamics, influencing disease outcomes. On the other hand, beneficial bacteria utilize IAA to promote plant growth and mitigate abiotic stresses, thereby enhancing nutrient use efficiency and reducing dependency on chemical fertilizers. Advancements in analytical methods, such as liquid chromatography-tandem mass spectrometry, have improved the quantification of bacterial IAA, enabling accurate measurement and analysis. Future research focusing on molecular interactions between IAA-producing bacteria and host plants could facilitate the development of biotechnological applications that integrate beneficial bacteria to improve crop performance, which is essential for addressing the challenges posed by climate change and ensuring global food security. This integration of bacterial IAA producers into agricultural practice promises to revolutionize crop management strategies by enhancing growth, fostering resilience, and reducing environmental impact.


Assuntos
Resiliência Psicológica , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Bactérias/genética , Bactérias/metabolismo , Plantas/microbiologia , Agricultura
4.
Sci Total Environ ; 903: 166870, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690757

RESUMO

Rice (Oryza sativa L.) cultivation in regions marked by elevated arsenic (As) concentrations poses significant health concerns due to As uptake by the plant and its subsequent entry into the human food chain. With rice serving as a staple crop for a substantial share of the global population, addressing this issue is critical for food security. In flooded paddy soils, where As availability is pronounced, innovative strategies to reduce As uptake and enhance agricultural sustainability are mandatory. Silicon (Si) and Si nanoparticles have emerged as potential candidates to mitigate As accumulation in rice. However, their effects on As uptake exhibit complexity, influenced by initial Si levels in the soil and the amount of Si introduced through fertilization. While low Si additions may inadvertently increase As uptake, higher Si concentrations may alleviate As uptake and toxicity. The interplay among existing Si and As availability, Si supplementation, and soil biogeochemistry collectively shapes the outcome. Adding water-soluble Si fertilizers (e.g., Na2SiO3 and K2SiO3) has demonstrated efficacy in mitigating As toxicity stress in rice. Nonetheless, the expense associated with these fertilizers underscores the necessity for low cost innovative solutions. Silicate-solubilizing bacteria (SSB) resilient to As hold promise by enhancing Si availability by accelerating mineral dissolution within the rhizosphere, thereby regulating the Si biogeochemical cycle in paddy soils. Promoting SSB could make cost-effective Si sources more soluble and, consequently, managing the intricate interplay of Si's dual effects on As accumulation in rice. This review paper offers a comprehensive exploration of Si's nuanced role in modulating As uptake by rice, emphasizing the potential synergy between As-resistant SSB and Si availability enhancement. By shedding light on this interplay, we aspire to shed light on an innovative attempt for reducing As accumulation in rice while advancing agricultural sustainability.

5.
Environ Monit Assess ; 195(7): 838, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37310472

RESUMO

Dust causes adverse effects on the physiological and biochemical properties of plants, and under soil salinity conditions, these effects seem to be intensified, which limits their use in the development of the green belt around or within cities. In the research, the effect of salt (0, 30, and 60 dS m-1) on air pollution (dust, 0 and 1.5 g m-2 30 days-1) tolerance index (APTI), peroxidase activity, and protein content of three desert species Seidlitzia rosmarinus, Haloxylon aphyllum, and Nitraria schoberi was investigated. The results indicated that the use of dust alone did not change the concentration of total chlorophyll in H. aphyllum, while it decreased the concentration of total chlorophyll by 18% in N. schoberi and 21% in S. rosmarinus. Under salt stress conditions, before and after applying dust, the concentration of total chlorophyll decreased in S. rosmarinus and N. schoberi plants, but there was no change in H. aphyllum. The amount of ascorbic acid, peroxide activity, and pH increased significantly with increasing salinity level before and after applying dust. Applying dust alone increased pH value only in N. schoberi and the amount of ascorbic acid and peroxidase in all three plants. Applying dust alone reduced relative water content and APTI only in N. schoberi plant and the amount of protein in all three plants. At salinity level of 60 dS m-1 and with application of dust treatment, APTI was decreased by 10, 15, and 9% compared to its control before application of dust, respectively, in H. aphyllum, N. schoberi, and S. rosmarinus plants. Therefore, it was found that N. schoberi, which may be used as a bioindicator of air quality, has a lower APTI than S. rosmarinus and H. aphyllum, which may be served as suitable sinks to survive the air pollution (the development of a design on green belt around or within the city), under conditions of simultaneous application of dust and salt.


Assuntos
Poluição do Ar , Chenopodiaceae , Magnoliopsida , Rosmarinus , Salsola , Poeira , Monitoramento Ambiental , Ácido Ascórbico , Clorofila , Peroxidases
6.
Microbiol Res ; 272: 127391, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37121023

RESUMO

A currently serious agronomic concern for paddy soils is arsenic (As) contamination. Paddy soils are mostly utilized for rice cultivation. Arsenite (As(III)) is prevalent in paddy soils, and its high mobility and toxicity make As uptake by rice substantially greater than that by other food crops. Globally, interest has increased towards using As-resistant plant growth-promoting bacteria (PGPB) to improve plant metal tolerance, promote plant growth, and immobilize As to prevent its uptake and accumulation in the edible parts of rice as much as possible. This review focuses on the As-resistant PGPB characteristics influencing rice growth and the mechanisms by which they function to alleviate As toxicity stress in rice plants. Several recent examples of mechanisms responsible for decreasing the availability of As to rice and coping with As stresses facilitated by the PGPB with multiple PGP traits (e.g., phosphate and silicate solubilization, the production of 1-aminocyclopropane-1-carboxylate deaminase, phytohormones, and siderophore, N2 fixation, sulfate reduction, the biosorption, bioaccumulation, methylation, and volatilization of As, and arsenite oxidation) are also reviewed. In addition, future research needs about the application of As-resistant PGPB with PGP traits to mitigate As accumulation in rice plants are described.


Assuntos
Arsênio , Arsenitos , Oryza , Poluentes do Solo , Arsênio/toxicidade , Arsênio/análise , Oryza/microbiologia , Arsenitos/toxicidade , Bactérias/genética , Solo , Poluentes do Solo/toxicidade
7.
Ecotoxicol Environ Saf ; 257: 114932, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080130

RESUMO

Investigating the effect of presoaking, as one of the most important physical factors affecting the adsorption behavior of biochar, on the adsorption of heavy metals by modified or non-modified biochar and presoaking mechanism is still an open issue. In this study, the water presoaking effect on the kinetics of cadmium (Cd) adsorption by rice husk biochar (produced at 450 °C, B1, and at 600 °C, B2) and the rice husk biochar modified with magnesium chloride (B1 modified with MgCl2, MB1, and B2 modified with MgCl2, MB2) was investigated. Furthermore, the effect of pH (2, 5, and 6), temperature (15, 25, and 35 °C), and biochar particle size (100 and 500 µm) on the kinetics of Cd adsorption was also investigated. Results revealed that the content of Cd adsorbed by the presoaked biochar was significantly higher than that by the non-presoaked biochar. The highest Cd adsorption capacity of MB2 and MB1 was 98.4 and 97.6 mg g-1, respectively, which was much better than that of B1 (7.6 mg g-1) and B2 (7.5 mg g-1). The modeling of kinetics results showed that in all cases pseudo-second-order model was well-fitted (R2>0.99) with Cd adsorption data. The results also indicated that the highest Cd adsorption values were observed at pH 6 in presoaked MB1 with size of 100 µm as well as at the temperature of 35 °C in presoaked MB2, indicating the optimum conditions for this process. The presoaking process was not affected by biochar size and pH, and the difference in adsorbed Cd content between presoaked biochars and non-presoaked ones was also similar. However, the temperature had a negative effect on presoaking. The presoaking process decreased micropores (<10 µm) in the biochars but had no effect on biochar hydrophobicity. Therefore, presoaking, which could significantly increase Cd adsorption and reduce equilibrium time by reducing the micropores of biochars, is suggested as an effective strategy for improving the efficiency of modified biochars or non-modified ones in the adsorption of contaminants (Cd) from aquatic media.


Assuntos
Cádmio , Carvão Vegetal , Cádmio/química , Adsorção , Temperatura , Carvão Vegetal/química , Cinética
8.
Front Plant Sci ; 14: 1098368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968413

RESUMO

Dust causes adverse effects on the physiological and biochemical characteristics of plants and limits their use in the development of the green belt. Air Pollution Tolerance Index (APTI) is an important tool to screen out plants, based on their tolerance or sensitivity level to different air pollutants. The aim of this study was to investigate the effect of two plant growth-promoting bacterial strains (Zhihengliuella halotolerans SB and Bacillus pumilus HR) and their combination as a biological solution on APTI of three desert plant species of Seidlitzia rosmarinus, Haloxylon aphyllum and Nitraria schoberi under dust stress (0 and 1.5 g m-2 30 days-1). Dust caused a significant decrease of 21% and 19%, respectively, in the total chlorophyll of N. schoberi and S. rosmarinus, an 8% decrease in leaf relative water content, a 7% decrease in the APTI of N. schoberi, and a decrease of 26 and 17% in protein content of H. aphyllum and N. schoberi, respectively. However, Z. halotolerans SB increased the amount of total chlorophyll in H. aphyllum and S. rosmarinus by 236% and 21%, respectively, and the amount of ascorbic acid by 75% and 67% in H. aphyllum and N. schoberi, respectively. B. pumilus HR also increased the leaf relative water content in H. aphyllum and N. schoberi by 10% and 15%, respectively. The inoculation with B. pumilus HR, Z. halotolerans SB and the combination of these two isolates decreased the activity of peroxidase by 70%, 51%, and 36%, respectively, in N. schoberi, and 62%, 89%, and 25% in S. rosmarinus, respectively. These bacterial strains also increased the concentration of protein in all three desert plants. Under dust stress, H. aphyllum had a higher APTI than the other two species. Z. halotolerans SB, which had been isolated from S. rosmarinus, was more effective than B. pumilus HR in alleviating the effects of dust stress on this plant. Therefore, it was concluded that plant growth-promoting rhizobacteria can be effective at improving the mechanisms of plant tolerance to air pollution in the green belt.

11.
Front Plant Sci ; 13: 948260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991408

RESUMO

Because of global warming, desertification is increasing. One of the best strategies for combating desertification is reforestation of forests and biological operations of vegetation. However, events like soil salinity and dust storms, as the most important manifestations of desertification, prevent vegetation from settling in these areas. In this study, the effects of two halotolerant plant growth-promoting rhizobacterial strains, Bacillus pumilus HR and Zhihengliuella halotolerans SB, on physiological and nutritional status of the desert halophyte Haloxylon aphyllum under the stress of salinity (0, 300, and 600 mM NaCl) and dust (0 and 1.5 g m-2 month-1) were examined. Under dust application, the Z. halotolerans SB strain compared to the B. pumilus HR strain and the combination of these two bacterial strains improved the content of total chlorophyll (247 and 316%), carotenoid (94 and 107%), phosphorus (113 and 209%), magnesium (196 and 212%), and total dry biomass (13 and 28%) in H. aphyllum at salinity levels of 300 and 600 mM NaCl, respectively. Under conditions of combined application of dust and salinity, B. pumilus HR compared to Z. halotolerans SB and the combination of two strains at salinity levels of 300 and 600 mM NaCl, respectively, had better performance in increasing the content of iron (53 and 69%), calcium (38 and 161%), and seedling quality index (95 and 56%) in H. aphyllum. The results also showed that both bacterial strains and their combination were able to reduce the content of ascorbic acid, flavonoid, total phenol, proline, and malondialdehyde, and catalase activity, and ultimately improve the antioxidant capacity of H. aphyllum. This showed that the use of halotolerant rhizobacteria can stop the production of free radicals and thus prevent cell membrane damage and the formation of malondialdehyde under salinity and dust stress. The results of this study for the first time showed that halotolerant rhizobacteria can increase the seedling quality index of H. aphyllum under combined conditions of salinity and dust. The use of these bacteria can be useful in the optimal afforestation of H. aphyllum species in arid and semi-arid ecosystems.

12.
Artigo em Inglês | MEDLINE | ID: mdl-35457533

RESUMO

Excessive use of antibiotics in the healthcare sector and livestock farming has amplified antimicrobial resistance (AMR) as a major environmental threat in recent years. Abiotic stresses, including soil salinity and water pollutants, can affect AMR in soils, which in turn reduces the yield and quality of agricultural products. The objective of this study was to investigate the effects of antibiotic resistance and abiotic stresses on antimicrobial resistance in agricultural soils. A systematic review of the peer-reviewed published literature showed that soil contaminants derived from organic and chemical fertilizers, heavy metals, hydrocarbons, and untreated sewage sludge can significantly develop AMR through increasing the abundance of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARBs) in agricultural soils. Among effective technologies developed to minimize AMR's negative effects, salinity and heat were found to be more influential in lowering ARGs and subsequently AMR. Several strategies to mitigate AMR in agricultural soils and future directions for research on AMR have been discussed, including integrated control of antibiotic usage and primary sources of ARGs. Knowledge of the factors affecting AMR has the potential to develop effective policies and technologies to minimize its adverse impacts.


Assuntos
Antibacterianos , Solo , Agricultura , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Esgotos , Microbiologia do Solo , Estresse Fisiológico
13.
Ecotoxicol Environ Saf ; 225: 112769, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34509968

RESUMO

Salinity stress is one of the most destructive non-biological stresses in plants that has adversely affected many agricultural lands in the world. Salinity stress causes many morphological, physiological, epigenetic and genetic changes in plants by increasing sodium and chlorine ions in the plant cells. The plants can alleviate this disorder to some extent through various mechanisms and return the cell to its original state, but if the salt dose is high, the plants may not be able to provide a proper response and can die due to salt stress. Nowadays, scientists have offered many solutions to this problem. Nanotechnology is one of the most emerging and efficient technologies that has been entered in this field and has recorded very brilliant results. Although some studies have confirmed the positive effects of nontechnology on plants under salinity stress, there is no the complete understanding of the relationship and interaction of nanoparticles and intracellular mechanisms in the plants. In the review paper, we have tried to reach a conclusion from the latest articles that how NPs could help salt-stressed plants to recover their cells under salt stress so that we can take a step towards clearing the existing ambiguities for researchers in this field.


Assuntos
Nanopartículas , Estresse Salino , Nanotecnologia , Salinidade , Estresse Fisiológico
14.
Ecotoxicol Environ Saf ; 223: 112576, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34340150

RESUMO

Hydrogel polymers have been used to enhance water and nutrient retention in agricultural soils. The incorporation of nanoparticles to yield composite hydrogels has also gained substantial momentum over the years. The aim of the research was to investigate the effect of hydrogel-nano natural char composite (reinforced starch-based hydrogels with natural char nanoparticles) at three levels 0%, 0.3% and 0.6% (w/w) on nutritional and morphological responses of tomato plant (Lycopersicon esculentum Mill.) as well as on some soil biological properties under water-deficit stress at three levels 50% water-holding capacity (WHC) (severe stress), 75% WHC (mild stress), and 85% WHC (non-stress conditions). The different levels of nano-composite and water deficit stress significantly (P < 0.05) affected plant morpho-nutritional indices and soil microbial traits. Water-deficit stress decreased all measured parameters in this assay. However, the use of nanocomposite reduced the negative effects of water-deficit stress on tomato growth and development. The magnitude of the responses to the nanocomposite treatment depended on the concentration of applied nanocomposite and stress severity with the most positive effects on the growth (22-45% increase) and nutritional indices (P, Fe, and Zn concentration) (16-29% increase) of tomato at level 0.3% hydrogel nanocomposite and 85% WHC and on soil respiration rate (61% increase) and microbial population size ( 89% increase) at the level 0.6% hydrogel nanocomposite and 75% WHC. Accordingly, it is suggested that the application of hydrogel-nano natural char composite as a promising soil amendment, if used correctly, can be a successful method to maintain soil moisture content (improved tomato growth), plant nutrients, and soil microbial activity in the tomato growing medium.


Assuntos
Nanopartículas , Solanum lycopersicum , Hidrogéis , Solo , Água/análise
15.
Environ Sci Pollut Res Int ; 28(44): 63359-63376, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34231139

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) bounded to street dust are a severe environmental and human health danger. This study provides preliminary information on the abundance of PAHs in street dust from Rafsanjan city, Iran, where industrial emissions are high and data are lacking. Seventy street dust samples were collected from streets with different traffic loads. The United States Environmental Protection Agency (USEPA) Standard Methods 8270D and 3550C were used for the measurement of PAHs using GC mass spectroscopy. The total concentration of PAHs was 1443 ng g-1, with a range of 1380-1550 ng g-1. Additionally, the concentration of carcinogenic PAHs (∑carcPAHs) ranged from 729.5 to 889.4 ng g-1, with a mean value of 798.1 ng g-1. Pyrene was the most abundant PAH, with an average concentration of 257 ng g-1. Source identification analyses showed that vehicle emissions along with incomplete combustion and petroleum were the main sources of PAHs. The ecological risk status of the studied area was moderate. Spatial distribution mapping revealed that the streets around the city center and oil company had higher PAH levels than the other sectors of Rafsanjan. The results indicated that dermal contact and ingestion of contaminated particles were the most important pathways compared to inhalation. The mean incremental lifetime cancer risk (ILCR) was 1.4 × 10-3 and 1.3 × 10-3 for children and adults, respectively. This implies potentially adverse health effects in exposed individuals. The mutagenic risk for both subpopulations was approximately 18 times greater than the one recommended by USEPA. Our findings suggest that children are subjected to a higher carcinogenic and mutagenic risk of PAHs, especially dibenzo[a,h]anthracene (DahA), bounded to street dust of Rafsanjan. Our study highlights the need for the development of emission monitoring and control scenarios.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Adulto , Criança , China , Poeira/análise , Monitoramento Ambiental , Humanos , Irã (Geográfico) , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco
16.
Front Plant Sci ; 12: 699618, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276750

RESUMO

Phosphorus (P) availability is usually low in soils around the globe. Most soils have a deficiency of available P; if they are not fertilized, they will not be able to satisfy the P requirement of plants. P fertilization is generally recommended to manage soil P deficiency; however, the low efficacy of P fertilizers in acidic and in calcareous soils restricts P availability. Moreover, the overuse of P fertilizers is a cause of significant environmental concerns. However, the use of arbuscular mycorrhizal fungi (AMF), phosphate-solubilizing bacteria (PSB), and the addition of silicon (Si) are effective and economical ways to improve the availability and efficacy of P. In this review the contributions of Si, PSB, and AMF in improving the P availability is discussed. Based on what is known about them, the combined strategy of using Si along with AMF and PSB may be highly useful in improving the P availability and as a result, its uptake by plants compared to using either of them alone. A better understanding how the two microorganism groups and Si interact is crucial to preserving soil fertility and improving the economic and environmental sustainability of crop production in P deficient soils. This review summarizes and discusses the current knowledge concerning the interactions among AMF, PSB, and Si in enhancing P availability and its uptake by plants in sustainable agriculture.

17.
Plant Physiol Biochem ; 163: 139-153, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33845330

RESUMO

In this study, the effects of three halotolerant rhizobacterial isolates AL, HR, and SB, which are able to grow at a salinity level of 1600 mM NaCl, with multiple plant growth promoting (PGP) traits on some seed and forage quality attributes, and vegetative, reproductive, biochemical and physiological characteristics of wheat plant irrigated with saline water (0, 40, 80, and 160 mM NaCl) were investigated. The ability of halotolerant bacterial isolates to produce PGP traits was affected by salinity levels, depending upon the bacterial isolates. Salinity stress significantly affected the yield, quality, and growth of wheat by modifying the morpho-physiological and biochemical traits of the exposed plants. However, all three bacterial isolates, especially isolate AL, significantly improved the biochemical (an increase in K+/Na+ ratio by 55%, plant P content by 50%, and plant Ca content by 31%), morphological (an increase in stem dry weight by 52%, root dry weight by 44%, spike dry weight by 34%, and grain dry weight by 43%), and physiological (an increase in leaf proline content by 50% and total phenol in leaf by 42%) attributes of wheat and aided the plant to tolerate salinity stress in contrast to un-inoculated plant. Plants inoculated with bacterial isolates showed significantly improved seed amylose by 36%, leaf crude protein by 30%, leaf metabolic energy by 37%, and leaf water-soluble sugar content by 34%. Among the measured PGP and plant attributes, bacterial auxin and plant K content were of key importance in increasing reproductive performance of wheat. The bacterial isolates AL, HR, and SB were identified as Bacillus safensis, B. pumilus, and Zhihengliuella halotolerans, respectively, based on 16 S rDNA sequence. The study reveals that application of halotolerant plant growth-promoting rhizobacteria isolated from halophytic rangeland plants can be a cost effective and ecological sustainable method to improve wheat productivity, especially the attributes related to seed and forage quality, under salinity stress conditions.


Assuntos
Rizosfera , Plantas Tolerantes a Sal , Bacillus , Bactérias , Micrococcaceae , Salinidade , Estresse Salino , Triticum
18.
Biotechnol Rep (Amst) ; 29: e00600, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33643858

RESUMO

Environmental abiotic stress conditions, especially drought and salinity, are currently the major factors that reduce crop yields worldwide. It has been reported that plant-associated beneficial bacteria, especially strains resistant to abiotic stresses that could maintain their efficiency under environmental challenging conditions, can contribute to alleviate abiotic stresses of host plants. In this study, we presented the assembly of the whole genome of Pantoea agglomerans ANP8, a plant growth-promoting bacterium resistant to salinity and drought stresses. The draft genome assembly contained 4,713,172 bp with 4586 predicted genes. A primary draft genome with a total of 5,115,548 bp and 1916 contigs was obtained (longest contig length being 485,272 bp and smallest contig being 112 bp). Following assembly upgrades, 68 scaffolds and 70 contigs with lengths ≥ 500 bp and an N50 = 209,657 bp were obtained. Number of 5554 and 5472 open reading frames longer than 50 codons were observed in the direct strand and in the reverse strand, respectively. Due to the multiple plant growth-promoting characteristics of this bacterium, genes involved in various indole-3-acetic acid production pathways, e.g., indole-3-pyruvic acid and indole-3-acetamide pathways, were found in the bacterium's genome. In addition, multiple copies of the gcd gene, most important enzymes involvement in the solubilization of phosphates, glucose dehydrogenase, were also observed in this genome. The study provides new genomic information to help understanding the way of action of a stress-tolerant plant growth-promoting bacterium.

19.
3 Biotech ; 10(11): 492, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33134010

RESUMO

Paddy soils represent the largest anthropogenic wetlands on earth. Soil drying and rewetting that occurs annually inflict significant stress on soil microbial activities in paddy soils. An incubation experiment of 60 years of paddy soil was conducted to simulate the conditions of paddy fields (25 °C and 75% air humidity) during a 16-day incubation time. The effect of drying-rewetting [DRW, with 4 levels: (1) constant soil moisture (CSM), (2) one-stage drought stress (DRW1), (3) two-stage drought stress (DRW2), and (4) three-stage drought stress (DRW3)] and how it evolves over 0, 4, 8. 12, and 16 days after incubation on the concentration of available phosphorus (AP), microbial biomass P (MBP) and microbial biomass C (MBC), and respiration rate (RES) was determined using repeated measures analysis (RMA). The results revealed that an increase in the number of drying-rewetting increases MBC and RES. Compared to CSM, frequent drying and rewetting caused an increase in RES, MBC and MBP by 88%, 38%, and 11%, respectively. Drying-rewetting increased microbial biomass C (MBC) and P (MBP) by 24-38% and 11-54%, respectively, during 8-16 days of incubation. Increasing the number of DRW cycles reduced AP concentration (except in DRW1). The decrease in available phosphorus is due to the increase in the intensity of immobilization under these conditions. Positive correlations were also observed between AP and MBP (r = 0.52), and between RES and MBC (r = 0.91). In general, the frequency of moisture in the paddy soil is favorable for increasing microbial activity.

20.
Heliyon ; 6(8): e04688, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32817901

RESUMO

A pot experiment was carried out to evaluate the effect of a municipal solid waste (MSW) biochar and a bacterial strain on the forage maize growth and the concentration of lead (Pb) and cadmium (Cd) in the edible tissue of maize irrigated with water contaminated with Cd (5 mg L-1) and Pb (100 mg L-1). Experimental treatments included (i) bacterial strain at two levels: no bacterial strain and Enterobacter cloacae R7; (ii) MSW biochar at three levels: 0, 1, and 3% (w/w); and (iii) irrigation water quality at five levels: plants irrigated with 100% freshwater (FW), plants irrigated with 75%FW + 25% contaminated water (CW), plants irrigated with 50%FW + 50% CW, plants irrigated with 25%FW + 75% CW, and plants irrigated with 100% CW. The effect of various treatments on maize growth indices and concentration of Pb(II) and Cd(II) in the plant was significant at 5% level. The concentration of these metals in the shoot of plants irrigated with 75 and 100% CW was higher than the permissible limits for Cd(II) and Pb(II) in livestock feed. However, the concentration of these metals in the shoot of the plants irrigated with 25 and 50% CW was lower than the permissible limit for this use. In this study, the combined application of 3%biochar and E. cloacae R7 had a significant effect on increased root dry weight (ranging from 29 to 33%), shoot dry weight (ranging from 32 to 43%) and bacterial root colonization (ranging from 33 to 53%) and on reduced concentration of Pb (ranging from 78 to 80%) and Cd (ranging from 72 to 76%) of the shoot of maize plant (edible tissues used by livestock), which was below the permissible limits for livestock feed, compared to corresponding controls. According to the results of this study, to reduce the concentration of the heavy metals in forage maize shoot (below the permissible limits for livestock feed), it is suggested using heavy metal-contaminated water either in combination with freshwater (50 or 75% FW) or in combination with biochar and bacterial biosorbent, averting human/animal health risk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...