Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 5: 8120, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25631753

RESUMO

Spintronic devices currently rely on magnetization control by external magnetic fields or spin-polarized currents. Developing temperature-driven magnetization control has potential for achieving enhanced device functionalities. Recently, there has been much interest in thermally induced magnetisation switching (TIMS), where the temperature control of intrinsic material properties drives a deterministic switching without applying external fields. TIMS, mainly investigated in rare-earth-transition-metal ferrimagnets, has also been observed in epitaxial Fe/MnAs/GaAs(001), where it stems from a completely different physical mechanism. In Fe/MnAs temperature actually modifies the surface dipolar fields associated with the MnAs magnetic microstructure. This in turn determines the effective magnetic field acting on the Fe overlayer. In this way one can reverse the Fe magnetization direction by performing thermal cycles at ambient temperatures. Here we use element selective magnetization measurements to demonstrate that various magnetic configurations of the Fe/MnAs/GaAs(001) system are stabilized predictably by acting on the thermal cycle parameters and on the presence of a bias field. We show in particular that the maximum temperature reached during the cycle affects the final magnetic configuration. Our findings show that applications are possible for fast magnetization switching, where local temperature changes are induced by laser excitations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...