Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 104(1): 1018-1038, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33162070

RESUMO

Objectives of the experiment were to determine the length of exposure to an acidogenic diet that would elicit changes in acid-base balance, mineral digestion, and response to parathyroid hormone (PTH)-induced changes in blood Ca and vitamin D3 in prepartum dairy cows. Nonlactating parous Holstein cows (n = 20) at 242 d of gestation were blocked by lactation (1 or >1) and pretreatment dry matter (DM) intake and, within block, they were randomly assigned to a diet with a dietary cation-anion difference (DCAD) of +200 mEq/kg of DM (DCAD +200) or an acidogenic diet with -150 mEq/kg of DM (DCAD -150). Water and DM intake were measured and blood was sampled daily. Urine was sampled every 3 h for 36 h, and then daily. During PTH challenges on d 3, 8, and 13, cows received i.v. PTH 1-34 fragment at 0.05 µg/kg of body weight every 20 min for 9 h to mimic the pulsatile release of endogenous PTH. Blood was sampled at 0 h, and hourly thereafter until 10 h, and at 12, 18, 24, 36, and 48 h relative to each challenge. Acid-base measures and concentrations of ionized Ca (iCa) in whole blood, and total Ca, Mg, P, and vitamin D metabolites in plasma were evaluated. On d 2 and 7, Ca, Mg, and P balances were evaluated. Cows fed DCAD -150 had smaller blood pH (7.431 vs. 7.389) and HCO3- (27.4 vs. 22.8 mM) compared with DCAD +200, and metabolic acidosis in DCAD -150 was observed 24 h after dietary treatments started. Concentrations of iCa begin to increase 24 h after feeding the acidogenic diet, and it was greater in DCAD -150 compared with DCAD +200 by 3 d in the experiment (1.23 vs. 1.26 mM). During the PTH challenges, cows fed DCAD -150 had greater concentration of iCa and area under the curve for iCa than those fed DCAD +200 (48.2 vs. 50.7 mmol/L × hour), and there was no interaction between treatment and challenge day. Concentration of 1,25-dihydroxyvitamin D3 in plasma did not differ during the PTH challenge, but change in 1,25-dihydroxyvitamin D3 relative to h 0 of the challenge was smaller in cows fed DCAD -150 than cows fed DCAD +200 (44.1 vs. 32.9 pg/mL). Urinary loss of Ca was greater in cows fed DCAD -150 compared with DCAD +200 (1.8 vs. 10.8 g/d); however, because digestibility of Ca increased in cows fed DCAD -150 (19.7 vs. 36.6%), the amount of Ca retained did not differ between treatments. Diet-induced metabolic acidosis was observed by 24 h after dietary treatment started, resulting in increases in concentration of iCa in blood observed between 1 and 3 d. Collectively, present results indicate that tissue responsiveness to PTH and changes in blood concentrations of iCa and digestibility of Ca are elicited within 3 d of exposure to an acidogenic diet. The increased apparent digestibility of Ca compensated for the increased urinary loss of Ca resulting in similar Ca retention.


Assuntos
Cálcio/metabolismo , Colecalciferol/metabolismo , Dieta/veterinária , Hormônio Paratireóideo/metabolismo , Vitaminas/metabolismo , Equilíbrio Ácido-Base , Ração Animal/análise , Animais , Ânions/administração & dosagem , Peso Corporal , Cátions/administração & dosagem , Bovinos , Doenças dos Bovinos/metabolismo , Colecalciferol/administração & dosagem , Suplementos Nutricionais , Feminino , Lactação , Minerais/metabolismo , Fatores de Tempo , Vitamina D/análogos & derivados , Vitamina D/sangue
2.
Food Chem Toxicol ; 123: 566-573, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30408540

RESUMO

3-NOP (3-nitroxy-propanol) is a new development compound which reduces methane emission from ruminating animals. For registration purposes with emphasis on EU and North America data requirements, mutagenic and genotoxic potential was assessed following OECD protocols and respective guidance documents. 3-NOP mutagenicity and genotoxicity testing raised no flags with regard to these endpoints. In silico assessment of 3-NOP and its major plasma metabolite NOPA (3-nitroxy-propionic acid) were predicted negative with regard to the bacterial reverse mutation (Ames) test. Ames test, mouse lymphoma assay, in vitro micronucleus test, and the oral in vivo micronucleus test using rat bone marrow were all negative. Exposure of the rat bone marrow was verified by the presence of 3-NOP and its metabolites NOPA and HPA (3-hydroxy-propionic acid) a naturally occurring substance in mammals) in plasma following oral dosing. It is therefore concluded that 3-NOP and its metabolites pose no mutagenic and genotoxic potential.


Assuntos
1-Propanol/toxicidade , Mutagênicos/toxicidade , 1-Propanol/química , 1-Propanol/metabolismo , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Camundongos , Testes para Micronúcleos , Testes de Mutagenicidade , Mutagênicos/química , Mutagênicos/metabolismo
3.
J Prev Alzheimers Dis ; 4(4): 226-235, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29181487

RESUMO

BACKGROUND: Aging is a highly complex biological process driven by multiple factors. Its progression can partially be influenced by nutritional interventions. Vitamin E is a lipid-soluble anti-oxidant that is investigated as nutritional supplement for its ability to prevent or delay the onset of specific aging pathologies, including neurodegenerative disorders. PURPOSE: We aimed here to investigate the effect of vitamin E during aging progression in a well characterized mouse model for premature aging. METHOD: Xpg-/- animals received diets with low (~2.5 mg/kg feed), medium (75 mg/kg feed) or high (375 mg/kg feed) vitamin E concentration and their phenotype was monitored during aging progression. Vitamin E content was analyzed in the feed, for stability reasons, and in mouse plasma, brain, and liver, for effectiveness of the treatment. Subsequent age-related changes were monitored for improvement by increased vitamin E or worsening by depletion in both liver and nervous system, organs sensitive to oxidative stress. RESULTS: Mice supplemented with high levels of vitamin E showed a delayed onset of age-related body weight decline and appearance of tremors when compared to mice with a low dietary vitamin E intake. DNA damage resulting in liver abnormalities such as changes in polyploidy, was considerably prevented by elevated amounts of vitamin E. Additionally, immunohistochemical analyses revealed that high intake of vitamin E, when compared with low and medium levels of vitamin E in the diet, reduces the number of p53-positive cells throughout the brain, indicative of a lower number of cells dying due to DNA damage accumulated over time. CONCLUSIONS: Our data underline a neuroprotective role of vitamin E in the premature aging animal model used in this study, likely via a reduction of oxidative stress, and implies the importance of improved nutrition to sustain health.


Assuntos
Senilidade Prematura/dietoterapia , Senilidade Prematura/patologia , Encéfalo/patologia , Morte Celular , Suplementos Nutricionais , Vitamina E/administração & dosagem , Senilidade Prematura/metabolismo , Animais , Peso Corporal , Encéfalo/metabolismo , Morte Celular/fisiologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Ingestão de Alimentos , Endonucleases/deficiência , Endonucleases/genética , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Fatores de Tempo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Tremor/dietoterapia , Tremor/metabolismo , Tremor/patologia , Vitamina E/metabolismo
4.
Regul Toxicol Pharmacol ; 73(1): 73-84, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26107290

RESUMO

Consumer health risk assessment for feed additives is based on the estimated human exposure to the additive that may occur in livestock edible tissues compared to its hazard. We present an approach using alternative methods for consumer health risk assessment. The aim was to use the fewest possible number of animals to estimate its hazard and human exposure without jeopardizing the safety upon use. As an example we selected the feed flavoring substance piperine and applied in silico modeling for residue estimation, results from literature surveys, and Read-Across to assess metabolism in different species. Results were compared to experimental in vitro metabolism data in rat and chicken, and to quantitative analysis of residues' levels from the in vivo situation in livestock. In silico residue modeling showed to be a worst case: the modeled residual levels were considerably higher than the measured residual levels. The in vitro evaluation of livestock versus rodent metabolism revealed no major differences in metabolism between the species. We successfully performed a consumer health risk assessment without performing additional animal experiments. As shown, the use and combination of different alternative methods supports animal welfare consideration and provides future perspective to reducing the number of animals.


Assuntos
Alcaloides/efeitos adversos , Ração Animal/efeitos adversos , Benzodioxóis/efeitos adversos , Aromatizantes/efeitos adversos , Piperidinas/efeitos adversos , Alcamidas Poli-Insaturadas/efeitos adversos , Animais , Galinhas , Simulação por Computador , Qualidade de Produtos para o Consumidor , Estudos de Viabilidade , Feminino , Masculino , Ratos , Ratos Wistar , Medição de Risco/métodos , Segurança
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...