Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 21(11): e3002290, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37983294

RESUMO

It is now established that many viruses that threaten public health establish condensates via phase transitions to complete their lifecycles, and knowledge on such processes may offer new strategies for antiviral therapy. In the case of influenza A virus (IAV), liquid condensates known as viral inclusions, concentrate the 8 distinct viral ribonucleoproteins (vRNPs) that form IAV genome and are viewed as sites dedicated to the assembly of the 8-partite genomic complex. Despite not being delimited by host membranes, IAV liquid inclusions accumulate host membranes inside as a result of vRNP binding to the recycling endocytic marker Rab11a, a driver of the biogenesis of these structures. We lack molecular understanding on how Rab11a-recycling endosomes condensate specifically near the endoplasmic reticulum (ER) exit sites upon IAV infection. We show here that liquid viral inclusions interact with the ER to fuse, divide, and slide. We uncover that, contrary to previous indications, the reported reduction in recycling endocytic activity is a regulated process rather than a competition for cellular resources involving a novel role for the host factor ATG9A. In infection, ATG9A mediates the removal of Rab11a-recycling endosomes carrying vRNPs from microtubules. We observe that the recycling endocytic usage of microtubules is rescued when ATG9A is depleted, which prevents condensation of Rab11a endosomes near the ER. The failure to produce viral inclusions accumulates vRNPs in the cytosol and reduces genome assembly and the release of infectious virions. We propose that the ER supports the dynamics of liquid IAV inclusions, with ATG9A facilitating their formation. This work advances our understanding on how epidemic and pandemic influenza genomes are formed. It also reveals the plasticity of recycling endosomes to undergo condensation in response to infection, disclosing new roles for ATG9A beyond its classical involvement in autophagy.


Assuntos
Vírus da Influenza A , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Vírus da Influenza A/genética , Microtúbulos/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
2.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894933

RESUMO

Biomolecular condensates are crucial compartments within cells, relying on their material properties for function. They form and persist through weak, transient interactions, often undetectable by classical biochemical approaches. Hence, microscopy-based techniques have been the most reliable methods to detail the molecular mechanisms controlling their formation, material properties, and alterations, including dissolution or phase transitions due to cellular manipulation and disease, and to search for novel therapeutic strategies targeting biomolecular condensates. However, technical challenges in microscopy-based analysis persist. This paper discusses imaging, data acquisition, and analytical methodologies' advantages, challenges, and limitations in determining biophysical parameters explaining biomolecular condensate formation, dissolution, and phase transitions. In addition, we mention how machine learning is increasingly important for efficient image analysis, teaching programs what a condensate should resemble, aiding in the correlation and interpretation of information from diverse data sources. Influenza A virus forms liquid viral inclusions in the infected cell cytosol that serve as model biomolecular condensates for this study. Our previous work showcased the possibility of hardening these liquid inclusions, potentially leading to novel antiviral strategies. This was established using a framework involving live cell imaging to measure dynamics, internal rearrangement capacity, coalescence, and relaxation time. Additionally, we integrated thermodynamic characteristics by analysing fixed images through Z-projections. The aforementioned paper laid the foundation for this subsequent technical paper, which explores how different modalities in data acquisition and processing impact the robustness of results to detect bona fide phase transitions by measuring thermodynamic traits in fixed cells. Using solely this approach would greatly simplify screening pipelines. For this, we tested how single focal plane images, Z-projections, or volumetric analyses of images stained with antibodies or live tagged proteins altered the quantification of thermodynamic measurements. Customizing methodologies for different biomolecular condensates through advanced bioimaging significantly contributes to biological research and potential therapeutic advancements.


Assuntos
Vírus da Influenza A , Condensados Biomoleculares , Processamento de Imagem Assistida por Computador , Anticorpos , Biofísica
3.
Elife ; 122023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37013374

RESUMO

In biological systems, liquid and solid-like biomolecular condensates may contain the same molecules but their behaviour, including movement, elasticity, and viscosity, is different on account of distinct physicochemical properties. As such, it is known that phase transitions affect the function of biological condensates and that material properties can be tuned by several factors including temperature, concentration, and valency. It is, however, unclear if some factors are more efficient than others at regulating their behaviour. Viral infections are good systems to address this question as they form condensates de novo as part of their replication programmes. Here, we used influenza A virus (IAV) liquid cytosolic condensates, AKA viral inclusions, to provide a proof of concept that liquid condensate hardening via changes in the valency of its components is more efficient than altering their concentration or the temperature of the cell. Liquid IAV inclusions may be hardened by targeting vRNP (viral ribonucleoprotein) interactions via the known NP (nucleoprotein) oligomerising molecule, nucleozin, both in vitro and in vivo without affecting host proteome abundance nor solubility. This study is a starting point for understanding how to pharmacologically modulate the material properties of IAV inclusions and may offer opportunities for alternative antiviral strategies.


Cells are organized into compartments that carry out specific functions. Envelope-like membranes enclose some of those compartments, while others remain unenclosed. The latter are called biomolecular condensates, and they can shift their physical states from a more liquid to a more solid form, which may affect how well they function. Temperature, molecular concentration and molecular interactions affect the physical state of condensates. Understanding what causes physical shifts in biomolecular condensates could have important implications for human health. For example, many viruses, including influenza, HIV, rabies, measles and the virus that causes COVID-19, SARS-CoV-2, use biomolecular condensates to multiply in cells. Changing the physical state of biomolecular condensates to one that hampers viruses' ability to multiply could be an innovative approach to treating viruses. Etibor et al. show that it is possible to harden condensates produced by influenza A virus. In the experiments, the researchers manipulated the temperature, molecular concentration and strength of connections between molecules in condensates created by influenza A-infected cells. Then, they measured their effects on the condensate's physical state. The experiments showed that using drugs that strengthen the bonds between molecules in condensates was the most effective strategy for hardening. Studies in both human cells and mice showed that using drugs to harden condensate in infected cells did not harm the cells or the animal and disabled the virus. The experiments provide preliminary evidence that using drugs to harden biomolecular condensates may be a potential treatment strategy for influenza A. More studies are necessary to test this approach to treating influenza A or other viruses that use condensates. If they are successful, the drug could add a new tool to the antiviral treatment toolbox.


Assuntos
Vírus da Influenza A , Viroses , Humanos , Replicação Viral , Ribonucleoproteínas , Antivirais
4.
Viruses ; 13(3)2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669141

RESUMO

Viruses are highly dependent on the host they infect. Their dependence triggers processes of virus-host co-adaptation, enabling viruses to explore host resources whilst escaping immunity. Scientists have tackled viral-host interplay at differing levels of complexity-in individual hosts, organs, tissues and cells-and seminal studies advanced our understanding about viral lifecycles, intra- or inter-species transmission, and means to control infections. Recently, it emerged as important to address the physical properties of the materials in biological systems; membrane-bound organelles are only one of many ways to separate molecules from the cellular milieu. By achieving a type of compartmentalization lacking membranes known as biomolecular condensates, biological systems developed alternative mechanisms of controlling reactions. The identification that many biological condensates display liquid properties led to the proposal that liquid-liquid phase separation (LLPS) drives their formation. The concept of LLPS is a paradigm shift in cellular structure and organization. There is an unprecedented momentum to revisit long-standing questions in virology and to explore novel antiviral strategies. In the first part of this review, we focus on the state-of-the-art about biomolecular condensates. In the second part, we capture what is known about RNA virus-phase biology and discuss future perspectives of this emerging field in virology.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Fenômenos Fisiológicos Virais , Animais , Fenômenos Biofísicos , HIV/fisiologia , Humanos , Vírus da Influenza A/fisiologia , Morbillivirus/fisiologia , Organelas/virologia , SARS-CoV-2/fisiologia , Vesiculovirus/fisiologia , Viroses/virologia , Internalização do Vírus
5.
Nat Commun ; 10(1): 1629, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967547

RESUMO

Influenza A virus has an eight-partite RNA genome that during viral assembly forms a complex containing one copy of each RNA. Genome assembly is a selective process driven by RNA-RNA interactions and is hypothesized to lead to discrete punctate structures scattered through the cytosol. Here, we show that contrary to the accepted view, formation of these structures precedes RNA-RNA interactions among distinct viral ribonucleoproteins (vRNPs), as they assemble in cells expressing only one vRNP type. We demonstrate that these viral inclusions display characteristics of liquid organelles, segregating from the cytosol without a delimitating membrane, dynamically exchanging material and adapting fast to environmental changes. We provide evidence that viral inclusions develop close to endoplasmic reticulum (ER) exit sites, depend on continuous ER-Golgi vesicular cycling and do not promote escape to interferon response. We propose that viral inclusions segregate vRNPs from the cytosol and facilitate selected RNA-RNA interactions in a liquid environment.


Assuntos
Retículo Endoplasmático/virologia , Vírus da Influenza A/fisiologia , Influenza Humana/patologia , Ribonucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus , Células A549 , Animais , Citosol/metabolismo , Citosol/virologia , Cães , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/virologia , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/patogenicidade , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Ligação Proteica , RNA Viral/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...