Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 157: 108631, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38199186

RESUMO

Short-circuited electrodes, in combination with dark fermentation, were evaluated in a biohydrogen production process. The system is based on an innovative design of a non-compartmented electromicrobial bioreactor with a conductive tubular membrane as cathode and a graphite felt as anode. In particular, the electrode specialization occurred when the bioreactor was inoculated with manure as the whole medium and when a vacuum was applied in the tubular membrane, for allowing continuous extraction of gaseous species (H2, CH4, CO2) from the bioreactor. This specialization of the electrodes as anode and cathode was further confirmed by microbial ecology analysis of biofilms and by cyclic voltammetry measurements. In these experimental conditions, the potential of the electrochemical system (short-circuited electrodes) reached values as low as -320 mV vs. SHE, associated with a significant bioH2 production. Moreover, a higher bioH2 production occurred and a potential of the electrochemical system as low as -429 mV vs SHE was temporarily observed, when additional heat treatments of the whole manure were applied in order to remove methanogen microorganisms (i.e., hydrogen consumers). In the bioreactor, the higher production of bioH2 would be promoted by electrofermentation from the current flow observed between short-circuited anode and cathode.


Assuntos
Reatores Biológicos , Esterco , Fermentação , Hidrogênio , Eletrodos
2.
Adv Mater ; 36(9): e2307045, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37787743

RESUMO

Ti3 C2 Tx MXene film is promising for low-voltage electrochemical actuators (ECAs) due to its excellent electrical conductivity, volumetric capacitance, and mechanical properties. However, its in-plane actuation is limited to little intralayer strain of MXene sheets under polarization. Here it is demonstrated that a simple tetrabutylammonium (TBA) functionalization of MXene improves the in-plane actuation strain by 337% and also enhances the mechanical property and stability in air and the electrolyte. Various in situ characterizations reveal that the improved actuation is ascribed to the co-insertion/desertion of TBA and Li ions into/from MXene interlayer galleries and inter-edge gaps that causes a large in-plane sliding of MXene sheets under negative/positive polarizations. The assembled bending actuator has a high strength and modulus and generates a peak-to-peak strain difference of 0.771% and a blocking force up to 51.5 times its own weight under 1 V. The designed soft robotic tweezer can grasp an object under 1 V and hold it firmly under 0 V. The novel sheet sliding mechanism resembling the filament sliding theory in skeletal muscles may inspire the design of high-performance actuators with other nanomaterials.

3.
Bioelectrochemistry ; 152: 108436, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37099858

RESUMO

Bioelectrochemical systems which employ microbes as electrode catalysts to convert chemical energy into electrical energy (or conversely), have emerged in recent years for water sanitation and energy recovery. Microbial biocathodes, and especially those reducing nitrate are gaining more and more attention. The nitrate-reducing biocathodes can efficiently treat nitrate-polluted wastewater. However, they require specific conditions and they have not yet been applied on a large scale. In this review, the current knowledge on nitrate-reducing biocathodes will be summarized. The fundamentals of microbial biocathodes will be discussed, as well as the progress towards applications for nitrate reduction in the context of water treatment. Nitrate-reducing biocathodes will be compared with other nitrate-removal techniques and the challenges and opportunities of this approach will be identified.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Nitratos , Eletricidade , Águas Residuárias , Eletrodos
4.
ACS Sens ; 7(8): 2209-2217, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35838550

RESUMO

Accurate and rapid on-site analysis of free SO2 content is crucial in the process of winemaking from a producer and consumer perspective. Herein, we present an amperometric sensor based on commercially available screen-printed electrodes coupled with an electrochemical oxygen filter. The developed amperometric method gave a linear response in a concentration range up to 200 mg L-1 with a limit of quantification of 7.5 mg L-1. The applicability of the developed sensor was successfully tested on 27 white and red wine samples and compared to the Ripper method (iodometry) that is a standard procedure for free SO2 determination. The sensor exhibits similar precision and accuracy but shows no interference from oxidizable species such as ascorbic acid, which is a major advantage over iodometric titration. The performance of the sensor was in addition positively evaluated during on-site analysis in a winery.


Assuntos
Vinho , Ácido Ascórbico/análise , Eletrodos , Sulfitos/análise , Vinho/análise
5.
Anal Chim Acta ; 1188: 339177, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34794582

RESUMO

We fabricated an electrochemical molecularly imprinted polymer (MIP) chemosensor for rapid identification and quantification of E. coli strain using 2-aminophenyl boronic acid as the functional monomer. This strain is a modified Gram-negative strain of Escherichia coli bacterium, an ordinary human gut component. The E. coli strongly interacts with a boronic acid because of porous and flexible polymers of the cell wall. The SEM imaging showed that the bacteria template was partially entrapped within the polymeric matrix in a single step. Moreover, this imaging confirmed E. coli K-12 cell template extraction effectiveness. The prepared MIP determined the E. coli K-12 strain up to 2.9 × 104 cells mL-1. The interference study performed in the presence of E. coli variants expressing different surface appendages (type 1 fimbriae or Antigen 43 protein) or Shewanella oneidensis MR1, another Gram-negative bacteria, demonstrated that the bacterial surface composition notably impacts sensing properties of the bacteria imprinted polymer.


Assuntos
Escherichia coli K12 , Impressão Molecular , Receptores Artificiais , Polímeros Molecularmente Impressos , Shewanella
6.
Bioelectrochemistry ; 142: 107895, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34364026

RESUMO

Microbial electrochemical snorkel (MES) is a short-circuited microbial fuel cell applicable to water treatment that does not produce energy but requires lower cost for its implementation. Few reports have already described its water treatment capabilities but no deeper electrochemical analysis were yet performed. We tested various materials (iron, stainless steel and porous graphite) and configurations of snorkel in order to better understand the rules that will control in a wetland the mixed potential of this self-powered system. We designed a model snorkel that was studied in laboratory and on the field. We confirmed the development of MES by identifying anodic and cathodic parts, by measuring the current between them and by analyzing microbial ecology in laboratory and field experiments. An important application is denitrification of surface water. Here we discuss the influence of nitrate on its electrochemical response and denitrification performances. Introducing nitrate caused the increase of the mixed potential of MES and of current at a potential value relatively more positive than for nitrate-reducing biocathodes described in the literature. The major criteria for promoting application of MES in artificial wetland dedicated to mitigation of non-point source nitrate pollution from agricultural water are considered.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Técnicas Eletroquímicas/métodos , Nitratos/química , Purificação da Água/métodos , Áreas Alagadas
7.
Polymers (Basel) ; 13(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34371998

RESUMO

This paper presents a novel, cost-effective approach to the fabrication of composite anion exchange membranes (AEMs). Hierarchical AEMs have been fabricated by coating a porous substrate with an interpenetrating polymer network (IPN) layer where poly(vinylpyrrolidone) (PVP) is immobilized in a crosslinked matrix. The IPN matrix was formed by UV initiated radical crosslinking of a mixture of acrylamide-based monomers and acrylic resins. The fabricated membranes have been compared with a commercial material (Fumatech FAP 450) in terms of ionic transport properties and performance in a vanadium redox flow battery (VRFB). Measures of area-specific resistance (ASR) and vanadium permeability for the proposed membranes demonstrated properties approaching the commercial benchmark. These properties could be tuned by changing the content of PVP in the IPN coating. Higher PVP/matrix ratios facilitate a higher water uptake of the coating layer and thus lower ASR (as low as 0.58 Ω.cm2). On the contrary, lower PVP/matrix ratios allow to reduce the water uptake of the coating and hence decrease the vanadium permeability at the cost of a higher ASR (as high as 1.99 Ω.cm2). In VRFB testing the hierarchical membranes enabled to reach energy efficiency comparable with the commercial AEM (PVP_14-74.7%, FAP 450-72.7% at 80 mA.cm-2).

8.
Membranes (Basel) ; 11(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200638

RESUMO

Composite anion-exchange membranes (AEMs) consisting of a porous substrate and a vinyl imidazolium poly(phenylene oxide) (VIMPPO)/acrylamide copolymer layer were fabricated in a straightforward process, for use in redox flow batteries. The porous substrate was coated with a mixture of VIMPPO and acrylamide monomers, then subsequently exposed to UV irradiation, in order to obtain a radically cured ion-exchange coating. Combining VIMPPO with low-value reagents allowed to significantly reduce the amount of synthesized ionomer used to fabricate the mem- brane down to 15%. Varying the VIMPPO content also allowed tuning the ionic transport properties of the resulting AEM. A series of membranes with different VIMPPO/acrylamides ratios were prepared to assess the optimal composition by studying the changes of membranes properties-water uptake, area resistivity, permeability, and chemical stability. Characterization of the membranes was followed by cycling experiments in a vanadium RFB (VRFB) cell. Among three composite membranes, the one with VIMPPO 15% w/w-reached the highest energy efficiency (75.1%) matching the performance of commercial ion-exchange membranes (IEMs) used in VRFBs (Nafion® N 115: 75.0% and Fumasep® FAP 450: 73.0%). These results showed that the proposed composite AEM, fabricated in an industrially oriented process, could be considered to be a lower-cost alternative to the benchmarked IEMs.

9.
Anal Chim Acta ; 1167: 338544, 2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34049625

RESUMO

A rapid and reliable oxygen elimination system was evaluated here for the electroanalytical study of metals. Dissolved oxygen was removed locally in the vicinity of a sensor by the means of electrochemical oxygen filter constructed from platinum grids. Three metals (Cd, Pb, and Zn) were determined by stripping chronopotentiometry (SCP) at a mercury film screen-printed electrode. Limits of detection of metals were in the nanomolar range under optimized experimental conditions. The electrochemical device was also tested for metal quantification in simple electrolyte solutions and in a natural water matrix. The proposed combination of oxygen elimination system with the metal sensor completely removes the need to purge the sample before SCP measurement. This makes the determination of metals by SCP faster, portable and more suited for on-field applications.

10.
Anal Chem ; 92(9): 6415-6422, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32233427

RESUMO

Scanning gel electrochemical microscopy (SGECM) is a novel technique measuring local electrochemistry based on a gel probe. The gel probe, which is fabricated by electrodeposition of hydrogel on a microdisk electrode, immobilizes the electrolyte, and constitutes a two-electrode system upon contact with the sample. The contact area determines the lateral physical resolution of the measurement, and considering the soft nature of the gel it is essential to be well analyzed. In this work, the lateral physical resolution of SGECM is quantitatively studied from two aspects: (1) marking single sampling points by locally oxidizing Ag to AgCl and measuring their size; (2) line scan over reference samples with periodic topography and composition. The gel probe is approached to the sample by either current or shear force feedback, and the physical resolution of them is compared. For the optimal gel probe based on 25 µm diameter Pt disk electrode of Rg ≈ 2, the lateral physical resolution of SGECM at contact position is ca. 50 µm for current feedback and ca. 63 µm for shear force feedback. More importantly, the lateral physical resolution of SGECM can be flexibly tuned in the range of 14-78 µm by pulling or pressing the gel probe after touching the sample. In general, current feedback is more sensitive to gel-sample contact than shear force feedback. But the latter is more versatile, which is also applicable to nonconductive samples.

11.
Anal Chem ; 92(11): 7425-7429, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32342694

RESUMO

An electrochemical oxygen filter is described that removes efficiently dissolved oxygen from the surface of an electrochemical sensor. Simulations show that 99% of oxygen can be removed in less than 60 s if an electrochemical filter made of a porous electrode is positioned at less than 200 µm from the sensor surface. For an experimental demonstration, the metallic filter was made with either a stainless steel or a platinum grid separated from the sensor by a porous separator. It was combined with a sensor for analysis of paraquat, an herbicide widely used over the world. In aerated solutions, paraquat signal was not distinguished due to the strong interference of oxygen. When using the oxygen filter, paraquat was clearly detected with a better-defined response than the one obtained under a N2 atmosphere that requires a longer time period before analysis.

12.
Sensors (Basel) ; 19(16)2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31405181

RESUMO

Sensitive and selective personal exposure monitors are needed to assess ozone (O3) concentrations in the workplace atmosphere in real time for the analysis and prevention of health risks. Here, a cumulative gas sensor using visible spectroscopy for real-time O3 determination is described. The sensing chip is a mesoporous silica thin film deposited on transparent glass and impregnated with methylene blue (MB). The sensor is reproducible, stable for at least 50 days, sensitive to 10 ppb O3 (one-tenth of the occupational exposure limit value in France, Swiss, Canada, U.K., Japan, and the USA) with a measurement range tested up to 500 ppb, and insensitive to NO2 and to large variation in relative humidity. A model and its derivative as a function of time are proposed to convert in real time the sensor response to concentrations, and an excellent correlation was obtained between those data and reference O3 concentrations. This sensor is based on a relatively cheap sensing material and a robust detection system, and its analytical performance makes it suitable for monitoring real-time O3 concentrations in workplaces to promote a safer environment for workers.

13.
Talanta ; 203: 269-273, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31202337

RESUMO

Benzene, toluene and xylenes (BTX) are among the most toxic volatile organic compounds that can be emitted into the environment of different workplaces. Regulations to protect workers continue to strengthen permissible exposure limit (PEL), and short-term exposure limit (STEL) for any 15-min period are defined for BTX that should be controlled with rapid, selective and sensitive on-site sensors. For that purpose, a real-time analysis of BTX is described here, using the UV spectrometric determination of instantaneously concentrated pollutants in a thin film of mesoporous and transparent silica deposited onto quartz plates. A new optical cell has been designed to achieve the lowest detection limits, up to the ppm level in air for benzene, toluene and p-xylene. The sensor was equipped with an air dryer to detect BTX in the presence of humidity and major interfering volatile organic compounds (acetone, ethanol, butanone and cyclohexane). The sensor has detection limits below defined PEL and STEL for benzene, toluene and xylenes. The adsorption properties of BTX on the sensor surface were quantitatively analyzed using the Freundlich equation, showing the singular behavior of benzene adsorption on the surface of silica relative to toluene and p-xylene.

14.
Nanomaterials (Basel) ; 9(1)2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30654537

RESUMO

Three different types of lignin (kraft, organosolv and phosphoric acid lignin) were characterized and tested as precursors of electrospun nanofibers. Polyethylene oxide (PEO) was added as a plasticizer and dimethyl formamide (DMF) employed as a solvent. It was found that the molecular weight of lignin was the key parameter to understand the differences of the mechanical stability of the resultant fiber mats. In the case of kraft lignin (KL), the influence of some changes in the synthetic process was also tested: applied voltage, pretreatment in air or not, and the addition of a small amount of Ketjen black. After pyrolysis in nitrogen flow, the obtained carbon nanofibers (CNFs) were characterized by different techniques to analyze their differences in morphology and surface chemistry. Vanadium electrochemistry in 3M sulfuric acid was used to evaluate the different CNFs. All fibers allowed electrochemical reactions, but we observed that the oxidation of V(II) to V(III) was very sensitive to the nature of the raw material. Materials prepared from kraft and phosphorus lignin showed the best performances. Nevertheless, when 1 wt.% of Ketjen black was added to KL during the electrospinning, the electrochemical performance of the sample was significantly improved and all targeted reactions for an all-vanadium redox flow battery were observed. Therefore, in this work, we demonstrated that CNFs obtained by the electrospinning of lignin can be employed as electrodes for vanadium electrochemistry, and their properties can be tuned to improve their electrochemical properties.

15.
Beilstein J Nanotechnol ; 9: 2750-2762, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416926

RESUMO

Single-walled carbon nanotubes (SWCNTs) were functionalized by ferrocene through ethyleneglycol chains of different lengths (FcETGn) and the functionalized SWCNTs (f-SWCNTs) were characterized by different complementary analytical techniques. In particular, high-resolution scanning electron transmission microscopy (HRSTEM) and electron energy loss spectroscopy (EELS) analyses support that the outer tubes of the carbon-nanotube bundles were covalently grafted with FcETGn groups. This result confirms that the electrocatalytic effect observed during the oxidation of the reduced form of nicotinamide adenine dinucleotide (NADH) co-factor by the f-SWCNTs is due to the presence of grafted ferrocene derivatives playing the role of a mediator. This work clearly proves that residual impurities present in our SWCNT sample (below 5 wt. %) play no role in the electrocatalytic oxidation of NADH. Moreover, molecular dynamic simulations confirm the essential role of the PEG linker in the efficiency of the bioelectrochemical device in water, due to the favorable interaction between the ETG units and water molecules that prevents π-stacking of the ferrocene unit on the surface of the CNTs. This system can be applied to biosensing, as exemplified for glucose detection. The well-controlled and well-characterized functionalization of essentially clean SWCNTs enabled us to establish the maximum level of impurity content, below which the f-SWCNT intrinsic electrochemical activity is not jeopardized.

16.
Bioelectrochemistry ; 124: 185-194, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30086423

RESUMO

An electroactive artificial biofilm has been optimized for the cathodic reduction of fumarate by Shewanella oneidensis. The system is based on the self-assembly of multi-walled carbon nanotubes with bacterial cells in the presence of a c-type cytochrome. The aggregates are then deposited on an electrode to form the electroactive artificial biofilm. Six c-type cytochromes have been studied, from bovine heart or Desulfuromonas and Desulfuvibrio strains. The isoelectric point of the cytochrome controls the self-assembly process that occurs only with positively-charged cytochromes. The redox potential of the cytochrome is critical for electron transfer reactions with membrane cytochromes of the Mtr pathway. Optimal results have been obtained with c3 from Desulfovibrio vulgaris Hildenborough having an isoelectric point of 10.2 and redox potentials of the four hemes ranging between -290 and -375 mV vs SHE. A current density of 170 µA cm-2 could be achieved in the presence of 50 mM fumarate. The stability of the electrochemical response was evaluated, showing a regular decrease of the current within 13 h, possibly due to the inactivation or leaching of loosely-bound cytochromes from the biofilm.


Assuntos
Biofilmes , Citocromos c/metabolismo , Desulfovibrio vulgaris/enzimologia , Eletrodos , Catálise , Citocromos c/química , Desulfovibrio vulgaris/metabolismo , Transporte de Elétrons , Fumaratos/química , Ponto Isoelétrico , Oxirredução , Eletricidade Estática , Ácido Succínico/química
17.
Anal Chem ; 90(15): 8889-8895, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30003777

RESUMO

Scanning electrochemical probe techniques have been widely applied for analyzing the local electrochemical activity of surfaces and interfaces. In this work, we develop a new concept of carrying out local electrochemical measurements by localizing both the electrode and the electrolyte. This is achieved through a gel probe, which is prepared by electrodepositing chitosan-gelatin gel on a microdisk electrode. It is positioned in contact with the sample surface by shear force feedback. The preliminary results indicate that the topography of the sample can be mapped by tapping the probe and recording the coordinates at a given normalized shear force signal, while the local electrochemical activity can be retrieved from local measurements with the probe touching the sample surface. The technique is denoted as scanning gel electrochemical microscopy. As compared with existing techniques, it has a major advantage of operating in air with the electrolyte immobilized in gel. This would prevent the spreading and leakage of solution on the sample surface and may lead to field applications.

18.
Bioelectrochemistry ; 118: 131-138, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28802176

RESUMO

A living material was formed by self-assembly of bacterial cells (Shewanella oneidensis MR-1 or Pseudomonas fluorescens) with carbon nanotubes in the presence of cytochrome c from a bovine heart with the goal to mimic electroactive biofilms. The role of cytochrome c on self-assembly, cell viability and extracellular electron transfer was studied. Scanning electron microscopy and dynamic light scattering experiments highlighted its role on the self-assembly of bacteria­carbon nanotube aggregates within only 2h in solution. The deposition of these aggregates on glassy carbon surfaces led to a homogenous composite film in which the bacteria were embedded in a carbon nanotube network. A comparable cell density of 1cellµm-2 was achieved in the presence or in the absence of cytochrome c, but this protein allowed maintaining a higher bacterial viability. Electrochemical characterization demonstrated the role of cytochrome c on electron transfer reactions, leading to a current density of up to 300µAcm-2 in the presence of 50mM formate when a porous carbon felt electrode is used as support for the biocomposite.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biofilmes , Biomimética/métodos , Pseudomonas fluorescens/metabolismo , Shewanella/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Eletroquímica , Transporte de Elétrons , Nanotubos de Carbono/química , Pseudomonas fluorescens/fisiologia , Shewanella/fisiologia , Fatores de Tempo
19.
ACS Appl Mater Interfaces ; 8(27): 17591-8, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27299176

RESUMO

Thiol-ene click chemistry can be exploited for the immobilization of cysteine-tagged dehydrogenases in an active form onto carbon electrodes (glassy carbon and carbon felt). The electrode surfaces have been first modified with vinylphenyl groups by electrochemical reduction of the corresponding diazonium salts generated in situ from 4-vinylaniline. The grafting process has been optimized in order to not hinder the electrochemical regeneration of NAD(+)/NADH cofactor and soluble mediators such as ferrocenedimethanol and [Cp*Rh(bpy)Cl](+). Having demonstrated the feasibility of thiol-ene click chemistry for attaching ferrocene moieties onto those carbon surfaces, the same approach was then applied to the immobilization of d-sorbitol dehydrogenases with cysteine tag. These proteins can be effectively immobilized (as pointed out by XPS), and the cysteine tag (either 1 or 2 cysteine moieties at the N terminus of the polypeptide chain) was proven to maintain the enzymatic activity of the dehydrogenase upon grafting. The bioelectrode was applied to electroenzymatic enantioselective reduction of d-fructose to d-sorbitol, as a case study.


Assuntos
Química Click , Cisteína , Eletrodos , Oxirredutases , Compostos de Sulfidrila
20.
Bioelectrochemistry ; 104: 65-70, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25854996

RESUMO

Membrane-bounded (S)-mandelate dehydrogenase has been immobilized on the surface of glassy carbon and carbon felt electrodes by encapsulation in a silica film obtained by sol-gel chemistry. Such bioelectrochemical system has been used for the first time for electroenzymatic conversion of (S)-mandelic acid to phenylglyoxylic acid. Apparent Km in this sol-gel matrix was 0.7 mM in the presence of ferrocenedimethanol, a value in the same order of magnitude as reported previously for vesicles in solution with other electron acceptors, i.e., Fe(CN)6(3-) or 2,6-dichloroindophenol. The bioelectrode shows very good operational stability for more than 6 days. This stability was definitively improved by comparison to a bioelectrode prepared by simple adsorption of the proteins on the electrode surface (fast activity decrease during the first 15 h of experiment). Optimal electroenzymatic reaction was achieved at pH9 and 40 °C. Apparent Km of the protein activity was 3 times higher in carbon felt electrode than on glassy carbon surface, possibly because of transport limitations in the porous architecture of the carbon felt. A good correlation was found between electrochemical data and chromatographic characterization of the reaction products in the bioelectrochemical reactor.


Assuntos
Oxirredutases do Álcool/química , Enzimas Imobilizadas/química , Membranas Artificiais , Oxirredutases do Álcool/metabolismo , Carbono/química , Eletroquímica , Eletrodos , Enzimas Imobilizadas/metabolismo , Vidro/química , Glioxilatos/química , Ácidos Mandélicos/química , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...