Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroeng Rehabil ; 21(1): 97, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849899

RESUMO

BACKGROUND: Body weight support (BWS) training devices are frequently used to improve gait in individuals with neurological impairments, but guidance in selecting an appropriate level of BWS is limited. Here, we aim to describe the initial BWS levels used during gait training, the rationale for this selection and the clinical goals aligned with BWS training for different diagnoses. METHOD: A systematic literature search was conducted in PubMed, Embase and Web of Science, including terms related to the population (individuals with neurological disorders), intervention (BWS training) and outcome (gait). Information on patient characteristics, type of BWS device, BWS level and training goals was extracted from the included articles. RESULTS: Thirty-three articles were included, which described outcomes using frame-based (stationary or mobile) and unidirectional ceiling-mounted devices on four diagnoses (multiple sclerosis (MS), spinal cord injury (SCI), stroke, traumatic brain injury (TBI)). The BWS levels were highest for individuals with MS (median: 75%, IQR: 6%), followed by SCI (median: 40%, IQR: 35%), stroke (median: 30%, IQR: 4.75%) and TBI (median: 15%, IQR: 0%). The included studies reported eleven different training goals. Reported BWS levels ranged between 30 and 75% for most of the training goals, without a clear relationship between BWS level, diagnosis, training goal and rationale for BWS selection. Training goals were achieved in all included studies. CONCLUSION: Initial BWS levels differ considerably between studies included in this review. The underlying rationale for these differences was not clearly motivated in the included studies. Variation in study designs and populations does not allow to draw a conclusion on the effectiveness of BWS levels. Hence, it remains difficult to formulate guidelines on optimal BWS settings for different diagnoses, BWS devices and training goals. Further efforts are required to establish clinical guidelines and to experimentally investigate which initial BWS levels are optimal for specific diagnoses and training goals.


Assuntos
Transtornos Neurológicos da Marcha , Humanos , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/etiologia , Peso Corporal , Marcha/fisiologia
2.
Dev Med Child Neurol ; 65(12): 1629-1638, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243486

RESUMO

AIM: To obtain insights into the effects of fatigue on the kinematics, kinetics, and energy cost of walking (ECoW) in children with cerebral palsy (CP). METHOD: In this prospective observational study, 12 children with CP (mean age 12 years 9 months, SD 2 years 7 months; four females, eight males) and 15 typically developing children (mean age 10 years 8 months, SD 2 years 4 months; seven females, eight males) followed a prolonged intensity-based walking protocol on an instrumented treadmill, combined with gas analysis measurements. The protocol consisted of consecutive stages, including a 6-minute walking exercise (6MW) at comfortable speed, 2 minutes of moderate-intensity walking (MIW) (with a heart rate > 70% of its predicted maximal), and 4 minutes walking after MIW. If necessary, the speed and slope were incremented to reach MIW. Outcomes were evaluated at the beginning and end of the 6MW and after MIW. RESULTS: With prolonged walking, Gait Profile Scores deteriorated slightly for both groups (p < 0.01). Knee flexion increased during early stance (p = 0.004) and ankle dorsiflexion increased during late stance (p = 0.034) in children with CP only. Negligible effects were found for kinetics. No demonstrable change in ECoW was found in either group (p = 0.195). INTERPRETATION: Kinematic deviations in children with CP are progressive with prolonged walking. The large variation in adaptations indicates that an individual approach is recommended to investigate the effects of physical fatigue on gait in clinical practice.


Assuntos
Paralisia Cerebral , Masculino , Feminino , Humanos , Criança , Paralisia Cerebral/complicações , Marcha/fisiologia , Caminhada/fisiologia , Teste de Esforço , Fadiga/etiologia , Fenômenos Biomecânicos
3.
Gait Posture ; 93: 7-13, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35042058

RESUMO

BACKGROUND: Muscle fatigue of the lower limbs is considered a main contributor to the perceived fatigue in children with cerebral palsy (CP) and is expected to occur during prolonged walking. In adults without disabilities, muscle fatigue has been proposed to be associated with adaptations in complexity of neuromuscular control. RESEARCH QUESTION: What are the effects of prolonged walking on signs of muscle fatigue and complexity of neuromuscular control in children with CP? METHODS: Ten children with CP and fifteen typically developing (TD) children performed a standardised protocol on an instrumented treadmill consisting of three stages: six-minutes walking at preferred speed (6 MW), moderate-intensity walking (MIW, with two minutes at heart rate > 70% of predicted maximal heart rate) and four-minutes walking at preferred speed (post-MIW). Electromyography (EMG) data were analysed for eight muscles of one leg during three time periods: 6 MW-start, 6 MW-end and post-MIW. Signs of muscle fatigue were quantified as changes in EMG median frequency and EMG root mean square (RMS). Complexity of neuromuscular control was quantified by total variance accounted for by one synergy (tVAF1). Muscle coactivation was assessed for antagonistic muscle pairs. RESULTS: EMG median frequency was decreased at 6 MW-end and post-MIW compared to 6 MW-start in children with CP (p < 0.05), but not in TD children. In both groups, EMG-RMS (p < 0.01) and muscle coactivation (p < 0.01) were decreased at 6 MW-end and post-MIW compared to 6 MW-start. tVAF1 decreased slightly at 6 MW-end and post-MIW compared to 6 MW-start in both groups (p < 0.05). Changes were most pronounced from 6 MW-start to 6 MW-end. SIGNIFICANCE: Children with CP presented signs of muscle fatigue after prolonged walking, while no effects were found for TD. Both groups showed minimal changes in tVAF1, suggesting signs of muscle fatigue are not associated with changes in complexity of neuromuscular control.


Assuntos
Paralisia Cerebral , Fadiga Muscular , Adulto , Paralisia Cerebral/complicações , Criança , Eletromiografia/métodos , Marcha/fisiologia , Humanos , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Caminhada/fisiologia
4.
Prosthet Orthot Int ; 45(5): 417-427, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34538817

RESUMO

BACKGROUND: Energy cost of walking (ECw) is an important determinant of walking ability in people with a lower-limb amputation. Large variety in estimates of ECw has been reported, likely because of the heterogeneity of this population in terms of level and cause of amputation and walking speed. OBJECTIVES: To assess (1) differences in ECw between people with and without a lower-limb amputation, and between people with different levels and causes of amputation, and (2) the association between ECw and walking speed. STUDY DESIGN: Systematic review and meta-analysis. METHODS: We included studies that compared ECw in people with and without a lower-limb amputation. A meta-analysis was done to compare ECw between both groups, and between different levels and causes of amputation. A second analysis investigated the association between self-selected walking speed and ECw in people with an amputation. RESULTS: Out of 526 identified articles, 25 were included in the meta-analysis and an additional 30 in the walking speed analysis. Overall, people with a lower-limb amputation have significantly higher ECw compared to people without an amputation. People with vascular transfemoral amputations showed the greatest difference (+102%) in ECw. The smallest difference (+12%) was found for people with nonvascular transtibial amputations. Slower self-selected walking speed was associated with substantial increases in ECw. CONCLUSION: This study provides general estimates on the ECw in people with a lower-limb amputation, quantifying the differences as a function of level and cause of amputation, as well as the relationship with walking speed.


Assuntos
Membros Artificiais , Caminhada , Amputação Cirúrgica , Metabolismo Energético , Humanos , Velocidade de Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...