Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Microbiol ; 13(6): 747-52, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21050804

RESUMO

A dedicated cell division machinery is needed for efficient proliferation of an organism. The eukaryotic actin-myosin based mechanism and the bacterial FtsZ-dependent machinery have both been characterized in detail, and a third division mechanism, the Cdv system, was recently discovered in archaea from the Crenarchaeota phylum. Despite these findings, division mechanisms remain to be identified in, for example, organisms belonging to the bacterial PVC superphylum, bacteria with extremely reduced genomes, wall-less archaea and bacteria, and in archaea that carry out the division process without cell constriction. Cytokinesis mechanisms in these clades and individual taxa are likely to include adaptation of host functions to division of bacterial symbionts, transfer of bacterial division genes into the host genome, vesicle formation without a dedicated constriction machinery, cross-wall formation without invagination, as well as entirely novel division mechanisms.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Archaea/genética , Bactérias/genética
2.
Commun Integr Biol ; 2(2): 86-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19704896

RESUMO

The Archaea constitute the third domain of life, a separate evolutionary lineage together with the Bacteria and the Eukarya.1 Species belonging to the Archaea contain a surprising mix of bacterial (metabolism, life style, genomic organization) and eukaryotic (replication, transcription, translation) features.2 The archaeal kingdom comprises two main phyla, the Crenarchaeota and the Euryarchaeota. Regarding the cell division process in archaeal species (reviewed in ref. 3), members of the Euryarchaeota rely on an FtsZ-based cell division mechanism4 whereas, previously, no division genes had been detected in the crenarchaea. However, we recently reported the discovery of the elusive cell division machinery in crenarchaea from the genus Sulfolobus.5 The minimal machinery consists of three genes, which we designated cdvA, B and C (for cell division), organized into an operon that is widely conserved among crenarchaea. The gene products polymerize between segregating nucleoids at the early mitotic stage, forming a complex that remains associated with the leading edge of constriction throughout cytokinesis. Interestingly, CdvB and CdvC were shown to be related to the eukaryotic ESCRT-III protein sorting machinery (reviewed in ref. 6), indicating shared common ancestry and mechanistic similarities to endosomal vesicle formation and viral (HIV) budding in eukaryotes. We also demonstrated that the cdv operon is subject to checkpoint-like regulation, and that the genes display a complementary phylogenetic distribution within the Archaea domain relative to FtsZ-dependent division systems.5 Here, the findings are further explored and discussed, and topics for further investigation are suggested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...