Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984785

RESUMO

The rhizosphere constitutes a dynamic interface between plant hosts and their associated microbial communities. Despite the acknowledged potential for enhancing plant fitness by manipulating the rhizosphere, the engineering of the rhizosphere microbiome through inoculation has posed significant challenges. These challenges are thought to arise from the competitive microbial ecosystem where introduced microbes must survive, and the absence of adaptation to the specific metabolic and environmental demands of the rhizosphere. Here, we engineered a synthetic rhizosphere community (SRC1) with the anticipation that it would exhibit a selective advantage in colonizing the host Sorghum bicolor, thereby potentially fostering its growth. SRC1 was assembled from bacterial isolates identified either for their potential role in community cohesion through network analysis or for their ability to benefit from host-specific exudate compounds. The growth performance of SRC1 was assessed in vitro on solid media, in planta under gnotobiotic laboratory conditions, and in the field. Our findings reveal that SRC1 cohesion is most robust when cultivated in the presence of the plant host under laboratory conditions, with lineages being lost from the community when grown either in vitro or in a native field setting. We establish that SRC1 effectively promotes the growth of both above- and below-ground plant phenotypes in both laboratory and native field contexts. Furthermore, in laboratory conditions, these growth enhancements correlate with the transcriptional dampening of lignin biosynthesis in the host. Collectively, these results underscore the potential utility of synthetic microbial communities for modulating crop performance in controlled and native environments alike.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39013608

RESUMO

The industrial amino acid production workhorse, Corynebacterium glutamicum naturally produces low levels of 2,3,5,6-tetramethylpyrazine (TMP), a valuable flavor, fragrance and commodity chemical. Here we demonstrate TMP production (∼0.8 ​g L-1) in C. glutamicum type strain ATCC13032 via overexpression of acetolactate synthase and/or alpha-acetolactate decarboxylase from Lactococcus lactis in CGXII minimal medium supplemented with 40 g L-1 glucose. This engineered strain also demonstrated growth and TMP production when the minimal medium was supplemented with up to 40% (v v-1) hydrolysates derived from ionic liquid pretreated sorghum biomass. A key objective was to take the fully engineered strain developed in this study and interrogate media parameters that influence the production of TMP, a critical post strain engineering optimization. Design of experiments in a high throughput plate format identified glucose, urea and their ratio as significant components affecting TMP production. These two components were further optimized using response surface methodology. In the optimized CGXII medium, the engineered strain could produce up to 3.56 g L-1 TMP (4-fold enhancement in titers and 2-fold enhancement in yield, mol mol-1) from 80 g L-1 glucose and 11.9 g L-1 urea in shake flask batch cultivation.

3.
J Exp Bot ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809816

RESUMO

Modification of lignin in feedstocks via genetic engineering aims to reduce biomass recalcitrance to facilitate efficient conversion processes. These improvements can be achieved by expressing exogenous enzymes that interfere with native biosynthetic pathways responsible for the production of the lignin precursors. In-planta expression of a 3-dehydroshikimate dehydratase (QsuB) in poplar trees reduced lignin content and altered their monomer composition, which enabled higher yields of sugars after cell wall polysaccharide hydrolysis. Understanding how plants respond to such genetic modifications at the transcriptional and metabolic levels is needed to facilitate further improvement and field deployment. In this work, we amassed fundamental knowledge on lignin-modified QsuB poplar using RNA-seq and metabolomics. The data clearly demonstrate that changes in gene expression and metabolite abundance can occur in a strict spatiotemporal fashion, revealing tissue-specific responses in the xylem, phloem, or periderm. In the poplar line that exhibits the strongest reduction in lignin, we found that 3% of the transcripts had altered expression levels and ~19% of the detected metabolites had differential abundance in the xylem from older stems. Changes affect predominantly the shikimate and phenylpropanoid pathways as wells as secondary cell wall metabolism, and result in significant accumulation of hydroxybenzoates derived from protocatechuate and salicylate.

4.
Biomacromolecules ; 25(6): 3542-3553, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38780531

RESUMO

Lignocellulosic biomass is a highly sustainable and largely carbon dioxide neutral feedstock for the production of biofuels and advanced biomaterials. Although thermochemical pretreatment is typically used to increase the efficiency of cell wall deconstruction, genetic engineering of the major plant cell wall polymers, especially lignin, has shown promise as an alternative approach to reduce biomass recalcitrance. Poplar trees with reduced lignin content and altered composition were previously developed by overexpressing bacterial 3-dehydroshikimate dehydratase (QsuB) enzyme to divert carbon flux from the shikimate pathway. In this work, three transgenic poplar lines with increasing QsuB expression levels and different lignin contents were studied using small-angle neutron scattering (SANS) and wide-angle X-ray scattering (WAXS). SANS showed that although the cellulose microfibril cross-sectional dimension remained unchanged, the ordered organization of the microfibrils progressively decreased with increased QsuB expression. This was correlated with decreasing total lignin content in the QsuB lines. WAXS showed that the crystallite dimensions of cellulose microfibrils transverse to the growth direction were not affected by the QsuB expression, but the crystallite dimensions parallel to the growth direction were decreased by ∼20%. Cellulose crystallinity was also decreased with increased QsuB expression, which could be related to high levels of 3,4-dihydroxybenzoate, the product of QsuB expression, disrupting microfibril crystallization. In addition, the cellulose microfibril orientation angle showed a bimodal distribution at higher QsuB expression levels. Overall, this study provides new structural insights into the impact of ectopic synthesis of small-molecule metabolites on cellulose organization and structure that can be used for future efforts aimed at reducing biomass recalcitrance.


Assuntos
Celulose , Populus , Celulose/química , Populus/genética , Populus/metabolismo , Populus/química , Hidroxibenzoatos/química , Hidroxibenzoatos/metabolismo , Lignina/química , Plantas Geneticamente Modificadas , Hidroliases/metabolismo , Hidroliases/genética , Biomassa , Parede Celular/metabolismo , Parede Celular/química , Resorcinóis
5.
Plant Physiol ; 195(1): 698-712, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38236304

RESUMO

Many insects have evolved the ability to manipulate plant growth to generate extraordinary structures called galls, in which insect larva can develop while being sheltered and feeding on the plant. In particular, cynipid (Hymenoptera: Cynipidae) wasps have evolved to form morphologically complex galls and generate an astonishing array of gall shapes, colors, and sizes. However, the biochemical basis underlying these remarkable cellular and developmental transformations remains poorly understood. A key determinant in plant cellular development is cell wall deposition that dictates the physical form and physiological function of newly developing cells, tissues, and organs. However, it is unclear to what degree cell walls are restructured to initiate and support the formation of new gall tissue. Here, we characterize the molecular alterations underlying gall development using a combination of metabolomic, histological, and biochemical techniques to elucidate how valley oak (Quercus lobata) leaf cells are reprogrammed to form galls. Strikingly, gall development involves an exceptionally coordinated spatial deposition of lignin and xylan to form de novo gall vasculature. Our results highlight how cynipid wasps can radically change the metabolite profile and restructure the cell wall to enable the formation of galls, providing insights into the mechanism of gall induction and the extent to which plants can be entirely reprogrammed to form unique structures and organs.


Assuntos
Parede Celular , Interações Hospedeiro-Parasita , Tumores de Planta , Vespas , Animais , Parede Celular/metabolismo , Vespas/fisiologia , Tumores de Planta/parasitologia , Quercus/metabolismo , Quercus/parasitologia , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Lignina/metabolismo
6.
Front Plant Sci ; 14: 1181035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324714

RESUMO

Switchgrass (Panicum virgatum L.) is a promising perennial bioenergy crop that achieves high yields with relatively low nutrient and energy inputs. Modification of cell wall composition for reduced recalcitrance can lower the costs of deconstructing biomass to fermentable sugars and other intermediates. We have engineered overexpression of OsAT10, encoding a rice BAHD acyltransferase and QsuB, encoding dehydroshikimate dehydratase from Corynebacterium glutamicum, to enhance saccharification efficiency in switchgrass. These engineering strategies demonstrated low lignin content, low ferulic acid esters, and increased saccharification yield during greenhouse studies in switchgrass and other plant species. In this work, transgenic switchgrass plants overexpressing either OsAT10 or QsuB were tested in the field in Davis, California, USA for three growing seasons. No significant differences in the content of lignin and cell wall-bound p-coumaric acid or ferulic acid were detected in transgenic OsAT10 lines compared with the untransformed Alamo control variety. However, the transgenic overexpressing QsuB lines had increased biomass yield and slightly increased biomass saccharification properties compared to the control plants. This work demonstrates good performance of engineered plants in the field, and also shows that the cell wall changes in the greenhouse were not replicated in the field, emphasizing the need to validate engineered plants under relevant field conditions.

7.
Biotechnol Biofuels Bioprod ; 15(1): 145, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36567331

RESUMO

BACKGROUND: Lignocellulosic resources are promising feedstocks for the manufacture of bio-based products and bioenergy. However, the inherent recalcitrance of biomass to conversion into simple sugars currently hinders the deployment of advanced bioproducts at large scale. Lignin is a primary contributor to biomass recalcitrance as it protects cell wall polysaccharides from degradation and can inhibit hydrolytic enzymes via non-productive adsorption. Several engineering strategies have been designed to reduce lignin or modify its monomeric composition. For example, expression of bacterial 3-dehydroshikimate dehydratase (QsuB) in poplar trees resulted in a reduction in lignin due to redirection of metabolic flux toward 3,4-dihydroxybenzoate at the expense of lignin. This reduction was accompanied with remarkable changes in the pools of aromatic compounds that accumulate in the biomass. RESULTS: The impact of these modifications on downstream biomass deconstruction and conversion into advanced bioproducts was evaluated in the current study. Using ionic liquid pretreatment followed by enzymatic saccharification, biomass from engineered trees released more glucose and xylose compared to wild-type control trees under optimum conditions. Fermentation of the resulting hydrolysates using Rhodosporidium toruloides strains engineered to produce α-bisabolene, epi-isozizaene, and fatty alcohols showed no negative impact on cell growth and yielded higher titers of bioproducts (as much as + 58%) in the case of QsuB transgenics trees. CONCLUSION: Our data show that low-recalcitrant poplar biomass obtained with the QsuB technology has the potential to improve the production of advanced bioproducts.

9.
Microbiome ; 10(1): 183, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36280858

RESUMO

BACKGROUND: Plant cell walls are interwoven structures recalcitrant to degradation. Native and adapted microbiomes can be particularly effective at plant cell wall deconstruction. Although most understanding of biological cell wall deconstruction has been obtained from isolates, cultivated microbiomes that break down cell walls have emerged as new sources for biotechnologically relevant microbes and enzymes. These microbiomes provide a unique resource to identify key interacting functional microbial groups and to guide the design of specialized synthetic microbial communities. RESULTS: To establish a system assessing comparative microbiome performance, parallel microbiomes were cultivated on sorghum (Sorghum bicolor L. Moench) from compost inocula. Biomass loss and biochemical assays indicated that these microbiomes diverged in their ability to deconstruct biomass. Network reconstructions from gene expression dynamics identified key groups and potential interactions within the adapted sorghum-degrading communities, including Actinotalea, Filomicrobium, and Gemmatimonadetes populations. Functional analysis demonstrated that the microbiomes proceeded through successive stages that are linked to enzymes that deconstruct plant cell wall polymers. The combination of network and functional analysis highlighted the importance of cellulose-degrading Actinobacteria in differentiating the performance of these microbiomes. CONCLUSIONS: The two-tier cultivation of compost-derived microbiomes on sorghum led to the establishment of microbiomes for which community structure and performance could be assessed. The work reinforces the observation that subtle differences in community composition and the genomic content of strains may lead to significant differences in community performance. Video Abstract.


Assuntos
Microbiota , Bactérias/genética , Parede Celular , Biomassa , Celulose/química
10.
Metab Eng Commun ; 15: e00207, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36188638

RESUMO

Engineering bioenergy crops to accumulate coproducts in planta can increase the value of lignocellulosic biomass and enable a sustainable bioeconomy. In this study, we engineered sorghum with a bacterial gene encoding a chorismate pyruvate-lyase (ubiC) to reroute the plastidial pool of chorismate from the shikimate pathway into the valuable compound 4-hydroxybenzoic acid (4-HBA). A gene encoding a feedback-resistant version of 3-deoxy-d-arabino-heptulonate-7-phosphate synthase (aroG) was also introduced in an attempt to increase the carbon flux through the shikimate pathway. At the full maturity and senesced stage, two independent lines that co-express ubiC and aroG produced 1.5 and 1.7 dw% of 4-HBA in biomass, which represents 36- and 40-fold increases compared to the titer measured in wildtype. The two transgenic lines showed no obvious phenotypes, growth defects, nor alteration of cell wall polysaccharide content when cultivated under controlled conditions. In the field, when harvested before grain maturity, transgenic lines contained 0.8 and 1.2 dw% of 4-HBA, which represent economically relevant titers based on recent technoeconomic analysis. Only a slight reduction (11-15%) in biomass yield was observed in transgenics grown under natural environment. This work provides the first metabolic engineering steps toward 4-HBA overproduction in the bioenergy crop sorghum to improve the economics of biorefineries by accumulating a value-added coproduct that can be recovered from biomass and provide an additional revenue stream.

11.
Proc Natl Acad Sci U S A ; 119(30): e2122309119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858445

RESUMO

Plants and microbes share common metabolic pathways for producing a range of bioproducts that are potentially foundational to the future bioeconomy. However, in planta accumulation and microbial production of bioproducts have never been systematically compared on an economic basis to identify optimal routes of production. A detailed technoeconomic analysis of four exemplar compounds (4-hydroxybenzoic acid [4-HBA], catechol, muconic acid, and 2-pyrone-4,6-dicarboxylic acid [PDC]) is conducted with the highest reported yields and accumulation rates to identify economically advantaged platforms and breakeven targets for plants and microbes. The results indicate that in planta mass accumulation ranging from 0.1 to 0.3 dry weight % (dwt%) can achieve costs comparable to microbial routes operating at 40 to 55% of maximum theoretical yields. These yields and accumulation rates are sufficient to be cost competitive if the products are sold at market prices consistent with specialty chemicals ($20 to $50/kg). Prices consistent with commodity chemicals will require an order-of-magnitude-greater accumulation rate for plants and/or yields nearing theoretical maxima for microbial production platforms. This comparative analysis revealed that the demonstrated accumulation rates of 4-HBA (3.2 dwt%) and PDC (3.0 dwt%) in engineered plants vastly outperform microbial routes, even if microbial platforms were to reach theoretical maximum yields. Their recovery and sale as part of a lignocellulosic biorefinery could enable biofuel prices to be competitive with petroleum. Muconic acid and catechol, in contrast, are currently more attractive when produced microbially using a sugar feedstock. Ultimately, both platforms can play an important role in replacing fossil-derived products.


Assuntos
Bactérias , Produtos Biológicos , Biotecnologia , Redes e Vias Metabólicas , Plantas , Leveduras , Bactérias/genética , Bactérias/metabolismo , Produtos Biológicos/metabolismo , Biotecnologia/economia , Biotecnologia/tendências , Catecóis/metabolismo , Parabenos/metabolismo , Plantas/genética , Plantas/metabolismo , Pironas/metabolismo , Ácido Sórbico/análogos & derivados , Ácido Sórbico/metabolismo , Leveduras/genética , Leveduras/metabolismo
12.
New Phytol ; 235(1): 234-246, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35377486

RESUMO

Renewed interests in the development of bioenergy, biochemicals, and biomaterials have elicited new strategies for engineering the lignin of biomass feedstock plants. This study shows, for the first time, that 3,4-dihydroxybenzoate (DHB) is compatible with the radical coupling reactions that assemble polymeric lignin in plants. We introduced a bacterial 3-dehydroshikimate dehydratase into hybrid poplar (Populus alba × grandidentata) to divert carbon flux away from the shikimate pathway, which lies upstream of lignin biosynthesis. Transgenic poplar wood had up to 33% less lignin with p-hydroxyphenyl units comprising as much as 10% of the lignin. Mild alkaline hydrolysis of transgenic wood released fewer ester-linked p-hydroxybenzoate groups than control trees, and revealed the novel incorporation of cell-wall-bound DHB, as well as glycosides of 3,4-dihydroxybenzoic acid (DHBA). Two-dimensional nuclear magnetic resonance (2D-NMR) analysis uncovered DHBA-derived benzodioxane structures suggesting that DHB moieties were integrated into the lignin polymer backbone. In addition, up to 40% more glucose was released from transgenic wood following ionic liquid pretreatment and enzymatic hydrolysis. This work highlights the potential of diverting carbon flux from the shikimate pathway for lignin engineering and describes a new type of 'zip-lignin' derived from the incorporation of DHB into poplar lignin.


Assuntos
Lignina , Populus , Hidroxibenzoatos , Lignina/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Madeira/química
14.
Biotechnol Biofuels ; 14(1): 217, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34801067

RESUMO

BACKGROUND: The development of bioenergy crops with reduced recalcitrance to enzymatic degradation represents an important challenge to enable the sustainable production of advanced biofuels and bioproducts. Biomass recalcitrance is partly attributed to the complex structure of plant cell walls inside which cellulose microfibrils are protected by a network of hemicellulosic xylan chains that crosslink with each other or with lignin via ferulate (FA) bridges. Overexpression of the rice acyltransferase OsAT10 is an effective bioengineering strategy to lower the amount of FA involved in the formation of cell wall crosslinks and thereby reduce cell wall recalcitrance. The annual crop sorghum represents an attractive feedstock for bioenergy purposes considering its high biomass yields and low input requirements. Although we previously validated the OsAT10 engineering approach in the perennial bioenergy crop switchgrass, the effect of OsAT10 expression on biomass composition and digestibility in sorghum remains to be explored. RESULTS: We obtained eight independent sorghum (Sorghum bicolor (L.) Moench) transgenic lines with a single copy of a construct designed for OsAT10 expression. Consistent with the proposed role of OsAT10 in acylating arabinosyl residues on xylan with p-coumarate (pCA), a higher amount of p-coumaroyl-arabinose was released from the cell walls of these lines upon hydrolysis with trifluoroacetic acid. However, no major changes were observed regarding the total amount of pCA or FA esters released from cell walls upon mild alkaline hydrolysis. Certain diferulate (diFA) isomers identified in alkaline hydrolysates were increased in some transgenic lines. The amount of the main cell wall monosaccharides glucose, xylose, and arabinose was unaffected. The transgenic lines showed reduced lignin content and their biomass released higher yields of sugars after ionic liquid pretreatment followed by enzymatic saccharification. CONCLUSIONS: Expression of OsAT10 in sorghum leads to an increase of xylan-bound pCA without reducing the overall content of cell wall FA esters. Nevertheless, the amount of total cell wall pCA remains unchanged indicating that most pCA is ester-linked to lignin. Unlike other engineered plants overexpressing OsAT10 or a phylogenetically related acyltransferase with similar putative function, the improvements of biomass saccharification efficiency in sorghum OsAT10 lines are likely the result of lignin reductions rather than reductions of cell wall-bound FA. These results also suggest a relationship between xylan-bound pCA and lignification in cell walls.

15.
ChemSusChem ; 14(23): 5235-5244, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34533890

RESUMO

Integrating multidisciplinary research in plant genetic engineering and renewable deep eutectic solvents (DESs) can facilitate a sustainable and economic biorefinery. Herein, we leveraged a plant genetic engineering approach to specifically incorporate C6 C1 monomers into the lignin structure. By expressing the bacterial ubiC gene in sorghum, p-hydroxybenzoic acid (PB)-rich lignin was incorporated into the plant cell wall while this monomer was completely absent in the lignin of the wild-type (WT) biomass. A DES was synthesized with choline chloride (ChCl) and PB and applied to the pretreatment of the PB-rich mutant biomass for a sustainable biorefinery. The release of fermentable sugars was significantly enhanced (∼190 % increase) compared to untreated biomass by the DES pretreatment. In particular, the glucose released from the pretreated mutant biomass was up to 12 % higher than that from the pretreated WT biomass. Lignin was effectively removed from the biomass with the preservation of more than half of the ß-Ο-4 linkages without condensed aromatic structures. Hydrogenolysis of the fractionated lignin was conducted to demonstrate the potential of phenolic compound production. In addition, a simple hydrothermal treatment could selectively extract PB from the same engineered lignin, showing a possible circular biorefinery. These results suggest that the combination of PB-based DES and engineered PB-rich biomass is a promising strategy to achieve a sustainable closed-loop biorefinery.

16.
Metab Eng ; 66: 148-156, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33895365

RESUMO

2-Pyrone-4,6-dicarboxylic acid (PDC), a chemically stable intermediate that naturally occurs during microbial degradation of lignin by bacteria, represents a promising building block for diverse biomaterials and polyesters such as biodegradable plastics. The lack of a chemical synthesis method has hindered large-scale utilization of PDC and metabolic engineering approaches for its biosynthesis have recently emerged. In this study, we demonstrate a strategy for the production of PDC via manipulation of the shikimate pathway using plants as green factories. In tobacco leaves, we first showed that transient expression of bacterial feedback-resistant 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (AroG) and 3-dehydroshikimate dehydratase (QsuB) produced high titers of protocatechuate (PCA), which was in turn efficiently converted into PDC upon co-expression of PCA 4,5-dioxygenase (PmdAB) and 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase (PmdC) derived from Comamonas testosteroni. We validated that stable expression of AroG in Arabidopsis in a genetic background containing the QsuB gene enhanced PCA content in plant biomass, presumably via an increase of the carbon flux through the shikimate pathway. Further, introducing AroG and the PDC biosynthetic genes (PmdA, PmdB, and PmdC) into the Arabidopsis QsuB background, or introducing the five genes (AroG, QsuB, PmdA, PmdB, and PmdC) stacked on a single construct into wild-type plants, resulted in PDC titers of ~1% and ~3% dry weight in plant biomass, respectively. Consistent with previous studies of plants expressing QsuB, all PDC producing lines showed strong reduction in lignin content in stems. This low lignin trait was accompanied with improvements of biomass saccharification efficiency due to reduced cell wall recalcitrance to enzymatic degradation. Importantly, most transgenic lines showed no reduction in biomass yields. Therefore, we conclude that engineering plants with the proposed de-novo PDC pathway provides an avenue to enrich biomass with a value-added co-product while simultaneously improving biomass quality for the supply of fermentable sugars. Implementing this strategy into bioenergy crops has the potential to support existing microbial fermentation approaches that exploit lignocellulosic biomass feedstocks for PDC production.


Assuntos
Arabidopsis , Poliésteres , Arabidopsis/genética , Biomassa , Lignina , Pironas
17.
BMC Plant Biol ; 21(1): 56, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33478381

RESUMO

BACKGROUND: Lignin deposited in plant cell walls negatively affects biomass conversion into advanced bioproducts. There is therefore a strong interest in developing bioenergy crops with reduced lignin content or altered lignin structures. Another desired trait for bioenergy crops is the ability to accumulate novel bioproducts, which would enhance the development of economically sustainable biorefineries. As previously demonstrated in the model plant Arabidopsis, expression of a 3-dehydroshikimate dehydratase in plants offers the potential for decreasing lignin content and overproducing a value-added metabolic coproduct (i.e., protocatechuate) suitable for biological upgrading. RESULTS: The 3-dehydroshikimate dehydratase QsuB from Corynebacterium glutamicum was expressed in the bioenergy crop switchgrass (Panicum virgatum L.) using the stem-specific promoter of an O-methyltransferase gene (pShOMT) from sugarcane. The activity of pShOMT was validated in switchgrass after observation in-situ of beta-glucuronidase (GUS) activity in stem nodes of plants carrying a pShOMT::GUS fusion construct. Under controlled growth conditions, engineered switchgrass lines containing a pShOMT::QsuB construct showed reductions of lignin content, improvements of biomass saccharification efficiency, and accumulated higher amount of protocatechuate compared to control plants. Attempts to generate transgenic switchgrass lines carrying the QsuB gene under the control of the constitutive promoter pZmUbi-1 were unsuccessful, suggesting possible toxicity issues associated with ectopic QsuB expression during the plant regeneration process. CONCLUSION: This study validates the transfer of the QsuB engineering approach from a model plant to switchgrass. We have demonstrated altered expression of two important traits: lignin content and accumulation of a co-product. We found that the choice of promoter to drive QsuB expression should be carefully considered when deploying this strategy to other bioenergy crops. Field-testing of engineered QsuB switchgrass are in progress to assess the performance of the introduced traits and agronomic performances of the transgenic plants.


Assuntos
Corynebacterium/enzimologia , Hidroliases/metabolismo , Lignina/biossíntese , Panicum/genética , Regiões Promotoras Genéticas/genética , Saccharum/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomassa , Parede Celular/metabolismo , Corynebacterium/genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Hidroliases/genética , Lignina/análise , Metiltransferases/genética , Especificidade de Órgãos , Panicum/crescimento & desenvolvimento , Panicum/metabolismo , Proteínas de Plantas/genética , Caules de Planta/enzimologia , Caules de Planta/genética , Plantas Geneticamente Modificadas , Saccharum/enzimologia
18.
Biotechnol Biofuels ; 13: 71, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32318116

RESUMO

Industrial crops are grown to produce goods for manufacturing. Rather than food and feed, they supply raw materials for making biofuels, pharmaceuticals, and specialty chemicals, as well as feedstocks for fabricating fiber, biopolymer, and construction materials. Therefore, such crops offer the potential to reduce our dependency on petrochemicals that currently serve as building blocks for manufacturing the majority of our industrial and consumer products. In this review, we are providing examples of metabolites synthesized in plants that can be used as bio-based platform chemicals for partial replacement of their petroleum-derived counterparts. Plant metabolic engineering approaches aiming at increasing the content of these metabolites in biomass are presented. In particular, we emphasize on recent advances in the manipulation of the shikimate and isoprenoid biosynthetic pathways, both of which being the source of multiple valuable compounds. Implementing and optimizing engineered metabolic pathways for accumulation of coproducts in bioenergy crops may represent a valuable option for enhancing the commercial value of biomass and attaining sustainable lignocellulosic biorefineries.

19.
Nat Prod Rep ; 37(7): 919-961, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971193

RESUMO

Covering: Up to 2019Phenolic cross-links and phenolic inter-unit linkages result from the oxidative coupling of two hydroxycinnamates or two molecules of tyrosine. Free dimers of hydroxycinnamates, lignans, play important roles in plant defence. Cross-linking of bound phenolics in the plant cell wall affects cell expansion, wall strength, digestibility, degradability, and pathogen resistance. Cross-links mediated by phenolic substituents are particularly important as they confer strength to the wall via the formation of new covalent bonds, and by excluding water from it. Four biopolymer classes are known to be involved in the formation of phenolic cross-links: lignins, extensins, glucuronoarabinoxylans, and side-chains of rhamnogalacturonan-I. Lignins and extensins are ubiquitous in streptophytes whereas aromatic substituents on xylan and pectic side-chains are commonly assumed to be particular features of Poales sensu lato and core Caryophyllales, respectively. Cross-linking of phenolic moieties proceeds via radical formation, is catalyzed by peroxidases and laccases, and involves monolignols, tyrosine in extensins, and ferulate esters on xylan and pectin. Ferulate substituents, on xylan in particular, are thought to be nucleation points for lignin polymerization and are, therefore, of paramount importance to wall architecture in grasses and for the development of technology for wall disassembly, e.g. for the use of grass biomass for production of 2nd generation biofuels. This review summarizes current knowledge on the intra- and extracellular acylation of polysaccharides, and inter- and intra-molecular cross-linking of different constituents. Enzyme mediated lignan in vitro synthesis for pharmaceutical uses are covered as are industrial exploitation of mutant and transgenic approaches to control cell wall cross-linking.


Assuntos
Parede Celular/química , Fenóis/química , Plantas/química , Sequência de Carboidratos
20.
Proc Natl Acad Sci U S A ; 116(28): 13816-13824, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235605

RESUMO

Despite the enormous potential shown by recent biorefineries, the current bioeconomy still encounters multifaceted challenges. To develop a sustainable biorefinery in the future, multidisciplinary research will be essential to tackle technical difficulties. Herein, we leveraged a known plant genetic engineering approach that results in aldehyde-rich lignin via down-regulation of cinnamyl alcohol dehydrogenase (CAD) and disruption of monolignol biosynthesis. We also report on renewable deep eutectic solvents (DESs) synthesized from phenolic aldehydes that can be obtained from CAD mutant biomass. The transgenic Arabidopsis thaliana CAD mutant was pretreated with the DESs and showed a twofold increase in the yield of fermentable sugars compared with wild type (WT) upon enzymatic saccharification. Integrated use of low-recalcitrance engineered biomass, characterized by its aldehyde-type lignin subunits, in combination with a DES-based pretreatment, was found to be an effective approach for producing a high yield of sugars typically used for cellulosic biofuels and biobased chemicals. This study demonstrates that integration of renewable DES with plant genetic engineering is a promising strategy in developing a closed-loop process.


Assuntos
Arabidopsis/genética , Biocombustíveis , Engenharia Genética , Lignina/biossíntese , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Aldeídos/química , Aldeídos/metabolismo , Arabidopsis/metabolismo , Biomassa , Pesquisa Interdisciplinar , Lignina/química , Lignina/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...