Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1150425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187531

RESUMO

The function of the aminotransferase Aat (GenBank Protein WP_159211138) from Pediococcus acidilactici FAM 18098 was studied in vivo. For this purpose, the gene was replaced with an erythromycin resistance gene using the temperature-sensitive Escherichia coli-Pediococcus shuttle plasmid pSET4T_Δaat. The knockout was verified by PCR and genome sequencing. Subsequently, the differences between the metabolism of the knockout and of the wild-type strain were investigated by determining the free amino acids and organic acids in culture supernatants. It was found that the knockout mutant no longer synthesized 3-phenyllactic acid (PLA) and 4-hydroxyphenyllactic acid (HPLA). Additionally, the mutant strain no longer catabolized phenylalanine. Metabolic pathway analysis using the KEGG database indicate that P. acidilactici cannot synthesize α-ketoglutarate that is a predominant amino-group acceptor in many transamination reactions. To study the transfer of the amino group of phenylalanine, the wild-type strain was incubated with [15N] phenylalanine. Mass spectrometry showed that during fermentation, [15N] alanine was formed, indicating that pyruvic acid is an amino group acceptor in P. acidilactici. The present study shows that Aat plays a crucial role in PLA/HPLA biosynthesis and pyruvic acid is an amino acceptor in transamination reactions in P. acidilactici.

2.
AMB Express ; 10(1): 100, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472439

RESUMO

During cheese ripening, the bacterial strain Pediococcus acidilactici FAM18098 produces the non-proteinogenic amino acid, α-aminobutyrate (AABA). The metabolic processes that lead to the biosynthesis of this compound are unknown. In this study, 10 P. acidilactici, including FAM18098 and nine Pediococcus pentosaceus strains, were screened for their ability to produce AABA. All P. acidilactici strains produced AABA, whereas the P. pentosaceus strains did not. The genomes of the pediococcal strains were sequenced and searched for genes encoding aminotransferases to test the hypothesis that AABA could result from the transamination of α-ketobutyrate. A GenBank and KEGG database search revealed the presence of a species-specific aminotransferase in P. acidilactici. The gene was cloned and its gene product was produced as a His-tagged fusion protein in Escherichia coli to determine the substrate specificity of this enzyme. The purified recombinant protein showed aminotransferase activity at pH 5.5. It catalyzed the transfer of the amino group from leucine, methionine, AABA, alanine, cysteine, and phenylalanine to the amino group acceptor α-ketoglutarate. Αlpha-ketobutyrate could replace α-ketoglutarate as an amino group acceptor. In this case, AABA was produced at significantly higher levels than glutamate. The results of this study show that P. acidilactici possesses a novel aminotransferase that might play a role in cheese biochemistry and has the potential to be used in biotechnological processes for the production of AABA.

3.
Front Microbiol ; 9: 2415, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386310

RESUMO

Milk and dairy products are rich in nutrients and are therefore habitats for various microbiomes. However, the composition of nutrients can be quite diverse, in particular among the sulfur containing amino acids. In milk, methionine is present in a 25-fold higher abundance than cysteine. Interestingly, a fraction of strains of the species L. paracasei - a flavor-enhancing adjunct culture species - can grow in medium with methionine as the sole sulfur source. In this study, we focus on genomic and evolutionary aspects of sulfur dependence in L. paracasei strains. From 24 selected L. paracasei strains, 16 strains can grow in medium with methionine as sole sulfur source. We sequenced these strains to perform gene-trait matching. We found that one gene cluster - consisting of a cysteine synthase, a cystathionine lyase, and a serine acetyltransferase - is present in all strains that grow in medium with methionine as sole sulfur source. In contrast, strains that depend on other sulfur sources do not have this gene cluster. We expanded the study and searched for this gene cluster in other species and detected it in the genomes of many bacteria species used in the food production. The comparison to these species showed that two different versions of the gene cluster exist in L. paracasei which were likely gained in two distinct events of horizontal gene transfer. Additionally, the comparison of 62 L. paracasei genomes and the two versions of the gene cluster revealed that this gene cluster is mobile within the species.

4.
Front Microbiol ; 8: 218, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261177

RESUMO

Histamine in food can cause intolerance reactions in consumers. Lactobacillus parabuchneri (L. parabuchneri) is one of the major causes of elevated histamine levels in cheese. Despite its significant economic impact and negative influence on human health, no genomic study has been published so far. We sequenced and analyzed 18 L. parabuchneri strains of which 12 were histamine positive and 6 were histamine negative. We determined the complete genome of the histamine positive strain FAM21731 with PacBio as well as Illumina and the genomes of the remaining 17 strains using the Illumina technology. We developed the synteny aware ortholog finding algorithm SynOrf to compare the genomes and we show that the histidine decarboxylase (HDC) gene cluster is located in a genomic island. It is very likely that the HDC gene cluster was transferred from other lactobacilli, as it is highly conserved within several lactobacilli species. Furthermore, we have evidence that the HDC gene cluster was transferred within the L. parabuchneri species.

5.
Chimia (Aarau) ; 70(5): 349-53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27198813

RESUMO

The manufacture of traditional Swiss-type cheeses adheres to strict rules, so as to guarantee quality and purity of the end product. This raises production costs and means consumers pay more. It also opens the door to cut-rate forgeries claiming to be made to the stringent standards and causing considerable economic losses to the entire dairy sector. In order to combat product counterfeiting, Agroscope has developed proof-of-origin cultures that allow the identification of copycats. Carefully selected lactic acid bacteria, having uniquely located insertion sequence elements, are proliferated by fermentation and subsequently dried by lyophilization. The proof-of-origin culture is added during the cheese production process and sustains maturation. These so-called 'biological markers' can be traced using polymerase chain reaction (PCR) methods, which allow authentication even if the cheese is cut into pieces or grated. They do not lead to any alteration of the cheese's taste or texture, and are compatible with the strict 'protected designation of origin' (PDO) specifications. The proof-of-origin cultures are used for the protection of several traditional Swiss-cheese varieties, such as Emmental PDO, Tête de Moine PDO, and Appenzeller(®). A market survey of Emmental PDO showed that the system is effective in revealing fraud and has the power to enforce corrective measures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...