Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 45(7): 1826-1829, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32236009

RESUMO

In this Letter, we describe a novel, to the best of our knowledge, device based on micro-structured graphene, referred to as zebra-patterned graphene saturable absorber (ZeGSA), which can be used as a saturable absorber with adjustable loss to initiate femtosecond pulse generation. Femtosecond laser micro-machining was employed to ablate monolayer graphene on an infrasil substrate in the form of stripes with a different duty cycle, resulting in the formation of regions with variable insertion loss in the 0.21%-3.12% range. The mode-locking performance of the device was successfully tested using a ${{\rm Cr}^{4 {+} }}{:}\,{\rm forsterite}$Cr4+:forsterite laser, operating near 1250 nm. In comparison with mode locking using non-ablated graphene, the ZeGSA device with regions of decreasing graphene, enabled improved power performance where the mode-locked output power increased from 68 mW to 114 mW, and the corresponding pulse duration decreased from 62 to 48 fs at the same incident pump power of 6.3 W. These experiments indicate that ZeGSA shows great potential as a laser mode locker with adjustable loss and that it should find applications in the development of femtosecond lasers over a broad spectral range.

2.
Opt Lett ; 45(3): 656-659, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32004276

RESUMO

We report experimental demonstration of graphene mode-locked operation of ${{\rm Tm}^{3 + }}\!:\!{{\rm YLiF}_4}$Tm3+:YLiF4 (YLF) and ${{\rm Tm}^{3 + }}\!:\!{{\rm KY}_3}{{\rm F}_{10}}$Tm3+:KY3F10 (KYF) lasers near 2.3 µm. To scale up the intracavity pulse energy, the cavity was extended, and double-end pumping was employed with a continuous-wave, tunable ${{\rm Ti}^{3 + }}\!:\!{\rm sapphire}$Ti3+:sapphire laser delivering up to 1 W near 780 nm. The extended ${{\rm Tm}^{3 + }}\!:\!{\rm KYF}$Tm3+:KYF laser cavity was purged with dry nitrogen to eliminate pulsing instabilities due to atmospheric absorption lines, but this was not needed in the case of the ${{\rm Tm}^{3 + }}\!:\!{\rm YLF}$Tm3+:YLF laser. Once initiated by graphene, stable uninterrupted mode-locked operation could be maintained with both lasers. With the extended cavity ${{\rm Tm}^{3 + }}\!:\!{\rm YLF}$Tm3+:YLF laser, 921 fs pulses were generated at a repetition rate of 17.2 MHz at 2304 nm. 739 fs pulses were obtained at the repetition rate of 54 MHz from the ${{\rm Tm}^{3 + }}\!:\!{\rm KYF}$Tm3+:KYF laser at 2340 nm. The corresponding pulse energy and peak power were 2.4 nJ and 2.6 kW for the ${{\rm Tm}^{3 + }}\!:\!{\rm YLF}$Tm3+:YLF laser, and 1.2 nJ and 1.6 kW for the ${{\rm Tm}^{3 + }}\!:\!{\rm KYF}$Tm3+:KYF laser. We foresee that it should be possible to generate shorter pulses at higher pump levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...