Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080627

RESUMO

In the context of natural resource scarcity, environmental challenges and human health concerns, the development of alternative solutions becomes crucial to sustainable development. Sustainable and renewable protein-containing materials such as soy or canola have proved to have wood bonding properties comparable to those of synthetic binders. In addition, the availability of canola meal offers a great possibility for the development of bio-adhesives for the wood-based panel industry. Furthermore, direct utilization of canola meal helps to avoid expensive and low-yield protein isolation processes. Using three different solvent solutions (water and 1 mol and 2 mol sodium hydroxide), canola-based bio-adhesives were prepared and used for the production of medium-density fiberboards (with 10 mm thickness and 800 kg/m3 target density) and three-layer particleboards (with 15 mm thickness and 640 kg/m3 target density). The produced boards were tested for their mechanical properties and dimensional stability according to European norms. With the MDFs' bending strength values above 40 N/mm2 and internal bonding strength greater than 0.5 N/mm2, the results show that there is indeed a possibility to achieve good mechanical properties using canola meal as a binder. The use of NaOH solutions as denaturants, as well as the addition of colasol, helped improve the bonding properties of the boards by 35.49% and 64.52% for 1 mol and 2 mol NaOH solutions, respectively. The obtained results show that the developed canola-based bio-adhesive can compete with conventional ones. However, despite the good mechanical properties of the produced boards, their poor dimensional stability due to the low water resistance of natural proteins suggests further improvement for industrial application.

2.
Polymers (Basel) ; 13(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808084

RESUMO

The thermal insulation of buildings using wood fiber insulation boards (WFIBs) constitutes a positive contribution towards climate change. Thereby, the bonding of wood fibers using mainly petrochemical-based resins such as polymeric diphenylmethane diisocyanate (pMDI) is an important measure to meet required board properties. Still there is a need to reduce or partial substitute the amount of these kinds of resins in favor of a greener product. This study therefore focusses on the feasibility of reducing the amount of pMDI by 50% through the addition of 1% BioPiva 395 or Indulin as two types of softwood Kraft-Lignin and lignin rich canola hulls together with propylene carbonate as a diluent. A panel density of 160 kg/m3 and a thickness of 40 mm was aimed. The curing of these modified pMDI was investigated by using two types of techniques: hot-steam (HS) and innovative hot-air/hot-steam-process (HA/HS). The WFIBs were then tested on their physical-mechanical properties. The equilibrium moisture content (EMC) was determined at two different climates. An exemplary investigation of thermal conductivity was conducted as well. The WFIBs did undergo a further chemically based analysis towards extractives content and elemental (C, N) composition. The results show that it is feasible to produce WFIBs with lower quantities of pMDI resin and added lignin with enhanced physical-mechanical board properties, which were lacking no disadvantages towards thermal conductivity or behavior towards moisture, especially when cured via HA/HS-process.

3.
Front Bioeng Biotechnol ; 9: 788622, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155404

RESUMO

Laccase-mediator-oxidized lignin offers replacement for conventional chemical binders to produce fiberboards. Compared to the previously reported laccase-mediator system (LMS), a lignin-laccase-mediator-system (LLMS) has an advantage in that it requires much shorter fiber-enzyme incubation time due to significantly increased redox reactions. However, the cost of regularly applying laccase on an industrial scale is currently too high. We have employed CcLcc5 from cultures of the basidiomycete Coprinopsis cinerea as a novel basi-laccase (a CAZy subfamily AA1_1 laccase) in medium-density fiberboard (MDF) production, in comparison to the commercial formulation Novozym 51003 with recombinantly produced asco-laccase MtL (a CAZy subfamily AA1_3 laccase-like multicopper oxidase from the ascomycete Myceliophthora thermophila). With the best-performing natural mediator 2,6-dimethoxyphenol (DMP), unpurified CcLcc5 was almost as good as formulated Novozym 51003 in increasing the molecular weight (MW) of the technical lignins tested, the hydrophilic high-MW Ca-lignosulfonate and the hydrophobic low-MW kraft lignin (Indulin AT). Oxygen consumption rates of the two distantly related, poorly conserved enzymes (31% sequence identity) with different mediators and lignosulfonate were also comparable, but Indulin AT significantly reduced the oxidative activity of Novozym 51003 unlike CcLcc5, regardless of the mediator used, either DMP or guaiacol. Oxygen uptake by both laccases was much faster with both technical lignins with DMP than with guaiacol. In case of lignosulfonate and DMP, 20-30 min of incubation was sufficient for full oxygen consumption, which fits in well in time with the usual binder application steps in industrial MDF production processes. LLMS-bonded MDF was thus produced on a pilot-plant scale with either crude CcLcc5 or Novozym 51003 at reduced enzyme levels of 5 kU/kg absolutely dry wood fiber with lignosulfonate and mediator DMP. Boards produced with CcLcc5 were comparably good as those made with Novozym 51003. Boards reached nearly standard specifications in internal bond strength (IB) and modulus of rupture (MOR), while thickness swelling (TS) was less good based on the hydrophilic character of lignosulfonate. LLMS-bonded MDF with Indulin AT and DMP performed better in TS but showed reduced IB and MOR values.

4.
Biotechnol J ; 6(10): 1253-61, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22081820

RESUMO

Increasing prices of petrochemical resins and possible harmful formaldehyde emissions from conventionally produced wood composites have resulted in increased interest in enzymatic binder systems as environmentally friendly alternatives for gluing lignocellulosic products. In this study, laccase mediator systems (LMSs) were used to activate lignin on wood fiber surfaces in the pilot-scale production of medium-density fiberboard (MDF) using a dry process. Three different mediators were applied: 4-hydroxybenzoic acid (HBA), 1-hydroxybenzotriazole (HBT), and acetosyringone (AS) of which HBA performed best. The mechanical properties of the manufactured boards produced with thermomechanical pulp (TMP) fibers, laccase, and HBA fulfilled all required European standards for wood-based panels. Oxygen consumption rates of the different LMSs and (13)C NMR spectroscopy results for treated TMP fibers were obtained for qualitative and quantitative analysis of lignin activation. The results show that reactions were most effective within the first 30 min of incubation. Oxygen consumption was fastest and highest for the LMS using HBA. (13)C NMR spectroscopy indicated the highest decrease of aromatic groups in the wood fiber lignin with this LMS. The data correlated well with the quality of the MDF. The required enzymatic reaction times allowed direct integration of the LMS into standard MDF production techniques. The results indicate that application of LMSs has a high potential for environmentally friendly MDF production.


Assuntos
Química Verde/métodos , Lacase/química , Lignina/química , Madeira/química , Acetofenonas/química , Isótopos de Carbono , Espectroscopia de Ressonância Magnética , Consumo de Oxigênio , Parabenos/química , Projetos Piloto , Pinus , Trametes/enzimologia , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...