Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 41(8): 1911-1924, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35157582

RESUMO

Motion estimation in echocardiography plays an important role in the characterization of cardiac function, allowing the computation of myocardial deformation indices. However, there exist limitations in clinical practice, particularly with regard to the accuracy and robustness of measurements extracted from images. We therefore propose a novel deep learning solution for motion estimation in echocardiography. Our network corresponds to a modified version of PWC-Net which achieves high performance on ultrasound sequences. In parallel, we designed a novel simulation pipeline allowing the generation of a large amount of realistic B-mode sequences. These synthetic data, together with strategies during training and inference, were used to improve the performance of our deep learning solution, which achieved an average endpoint error of 0.07 ± 0.06 mm per frame and 1.20 ± 0.67 mm between ED and ES on our simulated dataset. The performance of our method was further investigated on 30 patients from a publicly available clinical dataset acquired from a GE system. The method showed promise by achieving a mean absolute error of the global longitudinal strain of 2.5 ± 2.1% and a correlation of 0.77 compared to GLS derived from manual segmentation, much better than one of the most efficient methods in the state-of-the-art (namely the FFT-Xcorr block-matching method). We finally evaluated our method on an auxiliary dataset including 30 patients from another center and acquired with a different system. Comparable results were achieved, illustrating the ability of our method to maintain high performance regardless of the echocardiographic data processed.


Assuntos
Aprendizado Profundo , Ecocardiografia/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Movimento (Física)
2.
Diagn Interv Imaging ; 102(11): 653-658, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34600861

RESUMO

PURPOSE: The purpose of this study was to create a deep learning algorithm to infer the benign or malignant nature of breast nodules using two-dimensional B-mode ultrasound data initially marked as BI-RADS 3 and 4. MATERIALS AND METHODS: An ensemble of mask region-based convolutional neural networks (Mask-RCNN) combining nodule segmentation and classification were trained to explicitly localize the nodule and generate a probability of the nodule to be malignant on two-dimensional B-mode ultrasound. These probabilities were aggregated at test time to produce final results. Resulting inferences were assessed using area under the curve (AUC). RESULTS: A total of 460 ultrasound images of breast nodules classified as BI-RADS 3 or 4 were included. There were 295 benign and 165 malignant breast nodules used for training and validation, and another 137 breast nodules images used for testing. As a part of the challenge, the distribution of benign and malignant breast nodules in the test database remained unknown. The obtained AUC was 0.69 (95% CI: 0.57-0.82) on the training set and 0.67 on the test set. CONCLUSION: The proposed deep learning solution helps classify benign and malignant breast nodules based solely on two-dimensional ultrasound images initially marked as BIRADS 3 and 4.


Assuntos
Algoritmos , Redes Neurais de Computação , Área Sob a Curva , Humanos , Ultrassonografia
3.
Artigo em Inglês | MEDLINE | ID: mdl-32112679

RESUMO

In recent years, deep learning (DL) has been successfully applied to the analysis and processing of ultrasound images. To date, most of this research has focused on segmentation and view recognition. This article benchmarks different convolutional neural network algorithms for motion estimation in ultrasound imaging. We evaluated and compared several networks derived from FlowNet2, one of the most efficient architectures in computer vision. The networks were tested with and without transfer learning, and the best configuration was compared against the particle imaging velocimetry method, a popular state-of-the-art block-matching algorithm. Rotations are known to be difficult to track from ultrasound images due to a significant speckle decorrelation. We thus focused on the images of rotating disks, which could be tracked through speckle features only. Our database consisted of synthetic and in vitro B-mode images after log compression and covered a large range of rotational speeds. One of the FlowNet2 subnetworks, FlowNet2SD, produced competitive results with a motion field error smaller than 1 pixel on real data after transfer learning based on the simulated data. These errors remain small for a large velocity range without the need for hyperparameter tuning, which indicates the high potential and adaptability of DL solutions to motion estimation in ultrasound imaging.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Movimento/fisiologia , Ultrassonografia/métodos , Humanos , Imagens de Fantasmas , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...